Cargando…

A Cationic-Independent Mannose 6-Phosphate Receptor Inhibitor (PXS64) Ameliorates Kidney Fibrosis by Inhibiting Activation of Transforming Growth Factor-β(1)

The activity of transforming growth factor-β1 (TGF-β(1)) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 h...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jie, Wong, Muh Geot, Wong, May, Gross, Simon, Chen, Jason, Pollock, Carol, Saad, Sonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319899/
https://www.ncbi.nlm.nih.gov/pubmed/25658916
http://dx.doi.org/10.1371/journal.pone.0116888
Descripción
Sumario:The activity of transforming growth factor-β1 (TGF-β(1)) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2) cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ(1)+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO) model was used and the following experimental groups were studied: (i) Sham operated, (ii) UUO, (iii) UUO + telmisartan (iv) UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1) and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β(1). PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β(1).