Cargando…
DWT features performance analysis for automatic speech recognition of Urdu
This paper presents the work on Automatic Speech Recognition of Urdu language, using a comparative analysis for Discrete Wavelets Transform (DWT) based features and Mel Frequency Cepstral Coefficients (MFCC). These features have been extracted for one hundred isolated words of Urdu, each word uttere...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320178/ https://www.ncbi.nlm.nih.gov/pubmed/25674450 http://dx.doi.org/10.1186/2193-1801-3-204 |
_version_ | 1782356077448265728 |
---|---|
author | Ali, Hazrat Ahmad, Nasir Zhou, Xianwei Iqbal, Khalid Ali, Sahibzada Muhammad |
author_facet | Ali, Hazrat Ahmad, Nasir Zhou, Xianwei Iqbal, Khalid Ali, Sahibzada Muhammad |
author_sort | Ali, Hazrat |
collection | PubMed |
description | This paper presents the work on Automatic Speech Recognition of Urdu language, using a comparative analysis for Discrete Wavelets Transform (DWT) based features and Mel Frequency Cepstral Coefficients (MFCC). These features have been extracted for one hundred isolated words of Urdu, each word uttered by ten different speakers. The words have been selected from the most frequently used words of Urdu. A variety of age and dialect has been covered by using a balanced corpus approach. After extraction of features, the classification has been achieved by using Linear Discriminant Analysis. After the classification task, the confusion matrix obtained for the DWT features has been compared with the one obtained for Mel-Frequency Cepstral Coefficients based speech recognition. The framework has been trained and tested for speech data recorded under controlled environments. The experimental results are useful in determination of the optimum features for speech recognition task. |
format | Online Article Text |
id | pubmed-4320178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-43201782015-02-11 DWT features performance analysis for automatic speech recognition of Urdu Ali, Hazrat Ahmad, Nasir Zhou, Xianwei Iqbal, Khalid Ali, Sahibzada Muhammad Springerplus Research This paper presents the work on Automatic Speech Recognition of Urdu language, using a comparative analysis for Discrete Wavelets Transform (DWT) based features and Mel Frequency Cepstral Coefficients (MFCC). These features have been extracted for one hundred isolated words of Urdu, each word uttered by ten different speakers. The words have been selected from the most frequently used words of Urdu. A variety of age and dialect has been covered by using a balanced corpus approach. After extraction of features, the classification has been achieved by using Linear Discriminant Analysis. After the classification task, the confusion matrix obtained for the DWT features has been compared with the one obtained for Mel-Frequency Cepstral Coefficients based speech recognition. The framework has been trained and tested for speech data recorded under controlled environments. The experimental results are useful in determination of the optimum features for speech recognition task. Springer International Publishing 2014-04-27 /pmc/articles/PMC4320178/ /pubmed/25674450 http://dx.doi.org/10.1186/2193-1801-3-204 Text en © Ali et al.; licensee Springer. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
spellingShingle | Research Ali, Hazrat Ahmad, Nasir Zhou, Xianwei Iqbal, Khalid Ali, Sahibzada Muhammad DWT features performance analysis for automatic speech recognition of Urdu |
title | DWT features performance analysis for automatic speech recognition of Urdu |
title_full | DWT features performance analysis for automatic speech recognition of Urdu |
title_fullStr | DWT features performance analysis for automatic speech recognition of Urdu |
title_full_unstemmed | DWT features performance analysis for automatic speech recognition of Urdu |
title_short | DWT features performance analysis for automatic speech recognition of Urdu |
title_sort | dwt features performance analysis for automatic speech recognition of urdu |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320178/ https://www.ncbi.nlm.nih.gov/pubmed/25674450 http://dx.doi.org/10.1186/2193-1801-3-204 |
work_keys_str_mv | AT alihazrat dwtfeaturesperformanceanalysisforautomaticspeechrecognitionofurdu AT ahmadnasir dwtfeaturesperformanceanalysisforautomaticspeechrecognitionofurdu AT zhouxianwei dwtfeaturesperformanceanalysisforautomaticspeechrecognitionofurdu AT iqbalkhalid dwtfeaturesperformanceanalysisforautomaticspeechrecognitionofurdu AT alisahibzadamuhammad dwtfeaturesperformanceanalysisforautomaticspeechrecognitionofurdu |