Cargando…

Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling

BACKGROUND: Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Day, Jacqueline, Gietz, Roman Daniel, Rampitsch, Christof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320625/
https://www.ncbi.nlm.nih.gov/pubmed/25663824
http://dx.doi.org/10.1186/s12953-014-0060-3
_version_ 1782356156771991552
author Day, Jacqueline
Gietz, Roman Daniel
Rampitsch, Christof
author_facet Day, Jacqueline
Gietz, Roman Daniel
Rampitsch, Christof
author_sort Day, Jacqueline
collection PubMed
description BACKGROUND: Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells through a putative toxin-receptor and localizes with chloroplasts, ultimately causing damage and necrosis on leaves. These symptoms can occur even in the absence of the pathogen. Insensitive cultivars lack the receptor and Ptr ToxA cannot enter cells. The molecular mechanisms surrounding this plant-pathogen interaction are still largely unknown, although some details have begun to emerge. RESULTS: Using 2-D electrophoresis, fifteen protein changes were identified reproducibly in the leaf proteomes of a sensitive and an insensitive cultivar over three days after inoculation of purified Ptr ToxA. Functional analysis of the proteins indicated that senescence signals may be induced in the sensitive cultivar. In the insensitive cultivar proteins involved in some features of senescence inhibition were seen. Complementary responses at the biochemical level may be actively promoting a localized senescence-like response in sensitive wheat cultivars whilst actively inhibiting this response in insensitive cultivars. CONCLUSION: This is the first report of a biochemical response in an insensitive cultivar in this plant-pathogen interaction. Findings support the involvement of ethylene, and the activation of complementary pathways in sensitive versus insensitive wheat cultivars responding to Ptr ToxA. The nature of the system permits using purified toxin to mimic disease, which eliminates the pathogen proteome and ensures a synchronous response in inoculated leaves. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12953-014-0060-3) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4320625
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-43206252015-02-08 Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling Day, Jacqueline Gietz, Roman Daniel Rampitsch, Christof Proteome Sci Research Article BACKGROUND: Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells through a putative toxin-receptor and localizes with chloroplasts, ultimately causing damage and necrosis on leaves. These symptoms can occur even in the absence of the pathogen. Insensitive cultivars lack the receptor and Ptr ToxA cannot enter cells. The molecular mechanisms surrounding this plant-pathogen interaction are still largely unknown, although some details have begun to emerge. RESULTS: Using 2-D electrophoresis, fifteen protein changes were identified reproducibly in the leaf proteomes of a sensitive and an insensitive cultivar over three days after inoculation of purified Ptr ToxA. Functional analysis of the proteins indicated that senescence signals may be induced in the sensitive cultivar. In the insensitive cultivar proteins involved in some features of senescence inhibition were seen. Complementary responses at the biochemical level may be actively promoting a localized senescence-like response in sensitive wheat cultivars whilst actively inhibiting this response in insensitive cultivars. CONCLUSION: This is the first report of a biochemical response in an insensitive cultivar in this plant-pathogen interaction. Findings support the involvement of ethylene, and the activation of complementary pathways in sensitive versus insensitive wheat cultivars responding to Ptr ToxA. The nature of the system permits using purified toxin to mimic disease, which eliminates the pathogen proteome and ensures a synchronous response in inoculated leaves. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12953-014-0060-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-02-05 /pmc/articles/PMC4320625/ /pubmed/25663824 http://dx.doi.org/10.1186/s12953-014-0060-3 Text en © Day et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Day, Jacqueline
Gietz, Roman Daniel
Rampitsch, Christof
Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title_full Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title_fullStr Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title_full_unstemmed Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title_short Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling
title_sort proteome changes induced by pyrenophora tritici-repentis toxa in both insensitive and sensitive wheat indicate senescence-like signaling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320625/
https://www.ncbi.nlm.nih.gov/pubmed/25663824
http://dx.doi.org/10.1186/s12953-014-0060-3
work_keys_str_mv AT dayjacqueline proteomechangesinducedbypyrenophoratriticirepentistoxainbothinsensitiveandsensitivewheatindicatesenescencelikesignaling
AT gietzromandaniel proteomechangesinducedbypyrenophoratriticirepentistoxainbothinsensitiveandsensitivewheatindicatesenescencelikesignaling
AT rampitschchristof proteomechangesinducedbypyrenophoratriticirepentistoxainbothinsensitiveandsensitivewheatindicatesenescencelikesignaling