Cargando…
Review of methods for handling confounding by cluster and informative cluster size in clustered data
Clustered data are common in medical research. Typically, one is interested in a regression model for the association between an outcome and covariates. Two complications that can arise when analysing clustered data are informative cluster size (ICS) and confounding by cluster (CBC). ICS and CBC mea...
Autores principales: | Seaman, Shaun, Pavlou, Menelaos, Copas, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320764/ https://www.ncbi.nlm.nih.gov/pubmed/25087978 http://dx.doi.org/10.1002/sim.6277 |
Ejemplares similares
-
Methods for Observed-Cluster Inference When Cluster Size Is Informative: A Review and Clarifications
por: Seaman, Shaun R, et al.
Publicado: (2014) -
Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size
por: Pavlou, Menelaos, et al.
Publicado: (2021) -
Review and evaluation of penalised regression methods for risk prediction in low‐dimensional data with few events
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
Text embedding techniques for efficient clustering of twitter data
por: Ravi, Jayasree, et al.
Publicado: (2023) -
Optimal design of cluster randomized trials allowing unequal allocation of clusters and unequal cluster size between arms
por: Copas, Andrew J., et al.
Publicado: (2021)