Cargando…

Cognitive and psychomotor responses to high-altitude exposure in sea level and high-altitude residents of Ecuador

BACKGROUND: High-altitude inhabitants have cardiovascular and respiratory adaptations that are advantageous for high-altitude living, but they may have impaired cognitive function. This study evaluated the influence of altitude of residence on cognitive and psychomotor function upon acute exposure t...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis, John E, Wagner, Dale R, Garvin, Nathan, Moilanen, David, Thorington, Jessica, Schall, Cory
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320830/
https://www.ncbi.nlm.nih.gov/pubmed/25649647
http://dx.doi.org/10.1186/s40101-014-0039-x
Descripción
Sumario:BACKGROUND: High-altitude inhabitants have cardiovascular and respiratory adaptations that are advantageous for high-altitude living, but they may have impaired cognitive function. This study evaluated the influence of altitude of residence on cognitive and psychomotor function upon acute exposure to very high altitude. FINDINGS: Ecuadorians (31 residing at 0–1,500 m [LOW], 78 from 1,501–3,000 m [MOD], and 23 living >3,000 m [HIGH]) were tested upon their arrival to a hut at 4,860 m on Mount Chimborazo. Cognitive/psychomotor measurements included a go-no-go test (responding to a non-visual stimulus), a verbal fluency test (verbalizing a series of words specific to a particular category), and a hand movement test (rapidly repeating a series of hand positions). Mean differences between the three altitude groups on these cognitive/psychomotor tests were evaluated with one-way ANOVA. There were no significant differences (p = 0.168) between LOW, MOD, and HIGH for the verbal fluency test. However, the go-no-go test was significantly lower (p < 0.001) in the HIGH group (8.8 ± 1.40 correct responses) than the LOW (9.8 ± 0.61) or MOD (9.8 ± 0.55) groups, and both MOD (97.9 ± 31.2) and HIGH (83.5 ± 26.7) groups completed fewer correct hand movements than the LOW (136.6 ± 37.9) subjects (p < 0.001). CONCLUSIONS: Based on this field study, high-altitude residents appear to have some impaired cognitive function suggesting the possibility of maladaptation to long-term exposure to hypobaric hypoxia.