Cargando…
A Novel Method of Early Diagnosis of Alzheimer's Disease Based on EEG Signals
Studies have reported that electroencephalogram signals in Alzheimer's disease patients usually have less synchronization than those of healthy subjects. Changes in electroencephalogram signals start at early stage but, clinically, these changes are not easily detected. To detect this perturbat...
Autores principales: | Al-Jumeily, Dhiya, Iram, Shamaila, Vialatte, Francois-Benois, Fergus, Paul, Hussain, Abir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320850/ https://www.ncbi.nlm.nih.gov/pubmed/25688379 http://dx.doi.org/10.1155/2015/931387 |
Ejemplares similares
-
Prediction of Preterm Deliveries from EHG Signals Using Machine Learning
por: Fergus, Paul, et al.
Publicado: (2013) -
Automatic Epileptic Seizure Detection Using Scalp EEG and Advanced Artificial Intelligence Techniques
por: Fergus, Paul, et al.
Publicado: (2015) -
Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms
por: Fergus, Paul, et al.
Publicado: (2017) -
Wide and deep learning based approaches for classification of Alzheimer’s disease using genome-wide association studies
por: Alatrany, Abbas Saad, et al.
Publicado: (2023) -
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
por: Al-Jumeily, Dhiya, et al.
Publicado: (2014)