Cargando…
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distri...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321185/ https://www.ncbi.nlm.nih.gov/pubmed/25660352 http://dx.doi.org/10.1038/srep08305 |
Sumario: | While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km(2). We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities. |
---|