Cargando…
Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato
Drought stress conditions modify source–sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in pla...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321548/ https://www.ncbi.nlm.nih.gov/pubmed/25392479 http://dx.doi.org/10.1093/jxb/eru448 |
_version_ | 1782356277706358784 |
---|---|
author | Albacete, Alfonso Cantero-Navarro, Elena Großkinsky, Dominik K. Arias, Cintia L. Balibrea, María Encarnación Bru, Roque Fragner, Lena Ghanem, Michel E. González, María de la Cruz Hernández, Jose A. Martínez-Andújar, Cristina van der Graaff, Eric Weckwerth, Wolfram Zellnig, Günther Pérez-Alfocea, Francisco Roitsch, Thomas |
author_facet | Albacete, Alfonso Cantero-Navarro, Elena Großkinsky, Dominik K. Arias, Cintia L. Balibrea, María Encarnación Bru, Roque Fragner, Lena Ghanem, Michel E. González, María de la Cruz Hernández, Jose A. Martínez-Andújar, Cristina van der Graaff, Eric Weckwerth, Wolfram Zellnig, Günther Pérez-Alfocea, Francisco Roitsch, Thomas |
author_sort | Albacete, Alfonso |
collection | PubMed |
description | Drought stress conditions modify source–sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions. |
format | Online Article Text |
id | pubmed-4321548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43215482015-02-23 Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato Albacete, Alfonso Cantero-Navarro, Elena Großkinsky, Dominik K. Arias, Cintia L. Balibrea, María Encarnación Bru, Roque Fragner, Lena Ghanem, Michel E. González, María de la Cruz Hernández, Jose A. Martínez-Andújar, Cristina van der Graaff, Eric Weckwerth, Wolfram Zellnig, Günther Pérez-Alfocea, Francisco Roitsch, Thomas J Exp Bot Research Paper Drought stress conditions modify source–sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions. Oxford University Press 2015-02 2014-11-11 /pmc/articles/PMC4321548/ /pubmed/25392479 http://dx.doi.org/10.1093/jxb/eru448 Text en © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Albacete, Alfonso Cantero-Navarro, Elena Großkinsky, Dominik K. Arias, Cintia L. Balibrea, María Encarnación Bru, Roque Fragner, Lena Ghanem, Michel E. González, María de la Cruz Hernández, Jose A. Martínez-Andújar, Cristina van der Graaff, Eric Weckwerth, Wolfram Zellnig, Günther Pérez-Alfocea, Francisco Roitsch, Thomas Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title | Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title_full | Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title_fullStr | Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title_full_unstemmed | Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title_short | Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato |
title_sort | ectopic overexpression of the cell wall invertase gene cin1 leads to dehydration avoidance in tomato |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321548/ https://www.ncbi.nlm.nih.gov/pubmed/25392479 http://dx.doi.org/10.1093/jxb/eru448 |
work_keys_str_mv | AT albacetealfonso ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT canteronavarroelena ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT großkinskydominikk ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT ariascintial ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT balibreamariaencarnacion ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT bruroque ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT fragnerlena ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT ghanemmichele ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT gonzalezmariadelacruz ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT hernandezjosea ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT martinezandujarcristina ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT vandergraafferic ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT weckwerthwolfram ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT zellniggunther ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT perezalfoceafrancisco ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato AT roitschthomas ectopicoverexpressionofthecellwallinvertasegenecin1leadstodehydrationavoidanceintomato |