Cargando…
Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity
The evaluation of the biological networks is considered the essential key to understanding the complex biological systems. Meanwhile, the graph clustering algorithms are mostly used in the protein-protein interaction (PPI) network analysis. The complexes introduced by the clustering algorithms inclu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322317/ https://www.ncbi.nlm.nih.gov/pubmed/25692131 http://dx.doi.org/10.1155/2015/165186 |
_version_ | 1782356359040204800 |
---|---|
author | Kazemi-Pour, Ali Goliaei, Bahram Pezeshk, Hamid |
author_facet | Kazemi-Pour, Ali Goliaei, Bahram Pezeshk, Hamid |
author_sort | Kazemi-Pour, Ali |
collection | PubMed |
description | The evaluation of the biological networks is considered the essential key to understanding the complex biological systems. Meanwhile, the graph clustering algorithms are mostly used in the protein-protein interaction (PPI) network analysis. The complexes introduced by the clustering algorithms include noise proteins. The error rate of the noise proteins in the PPI network researches is about 40–90%. However, only 30–40% of the existing interactions in the PPI databases depend on the specific biological function. It is essential to eliminate the noise proteins and the interactions from the complexes created via clustering methods. We have introduced new methods of weighting interactions in protein clusters and the splicing of noise interactions and proteins-based interactions on their weights. The coexpression and the sequence similarity of each pair of proteins are considered the edge weight of the proteins in the network. The results showed that the edge filtering based on the amount of coexpression acts similar to the node filtering via graph-based characteristics. Regarding the removal of the noise edges, the edge filtering has a significant advantage over the graph-based method. The edge filtering based on the amount of sequence similarity has the ability to remove the noise proteins and the noise interactions. |
format | Online Article Text |
id | pubmed-4322317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43223172015-02-17 Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity Kazemi-Pour, Ali Goliaei, Bahram Pezeshk, Hamid Biomed Res Int Research Article The evaluation of the biological networks is considered the essential key to understanding the complex biological systems. Meanwhile, the graph clustering algorithms are mostly used in the protein-protein interaction (PPI) network analysis. The complexes introduced by the clustering algorithms include noise proteins. The error rate of the noise proteins in the PPI network researches is about 40–90%. However, only 30–40% of the existing interactions in the PPI databases depend on the specific biological function. It is essential to eliminate the noise proteins and the interactions from the complexes created via clustering methods. We have introduced new methods of weighting interactions in protein clusters and the splicing of noise interactions and proteins-based interactions on their weights. The coexpression and the sequence similarity of each pair of proteins are considered the edge weight of the proteins in the network. The results showed that the edge filtering based on the amount of coexpression acts similar to the node filtering via graph-based characteristics. Regarding the removal of the noise edges, the edge filtering has a significant advantage over the graph-based method. The edge filtering based on the amount of sequence similarity has the ability to remove the noise proteins and the noise interactions. Hindawi Publishing Corporation 2015 2015-01-27 /pmc/articles/PMC4322317/ /pubmed/25692131 http://dx.doi.org/10.1155/2015/165186 Text en Copyright © 2015 Ali Kazemi-Pour et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kazemi-Pour, Ali Goliaei, Bahram Pezeshk, Hamid Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title | Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title_full | Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title_fullStr | Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title_full_unstemmed | Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title_short | Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity |
title_sort | protein complex discovery by interaction filtering from protein interaction networks using mutual rank coexpression and sequence similarity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322317/ https://www.ncbi.nlm.nih.gov/pubmed/25692131 http://dx.doi.org/10.1155/2015/165186 |
work_keys_str_mv | AT kazemipourali proteincomplexdiscoverybyinteractionfilteringfromproteininteractionnetworksusingmutualrankcoexpressionandsequencesimilarity AT goliaeibahram proteincomplexdiscoverybyinteractionfilteringfromproteininteractionnetworksusingmutualrankcoexpressionandsequencesimilarity AT pezeshkhamid proteincomplexdiscoverybyinteractionfilteringfromproteininteractionnetworksusingmutualrankcoexpressionandsequencesimilarity |