Cargando…
BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers
INTRODUCTION: Intrinsic or acquired chemoresistance is a major problem in oncology. Although highly responsive to chemotherapies such as paclitaxel, most triple negative breast cancer (TNBC) patients develop chemoresistance. Here we investigate the role of BRCA1-IRIS as a novel treatment target for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322455/ https://www.ncbi.nlm.nih.gov/pubmed/25583261 http://dx.doi.org/10.1186/s13058-014-0512-9 |
_version_ | 1782356383949127680 |
---|---|
author | Blanchard, Zannel Paul, Bibbin T Craft, Barbara ElShamy, Wael M |
author_facet | Blanchard, Zannel Paul, Bibbin T Craft, Barbara ElShamy, Wael M |
author_sort | Blanchard, Zannel |
collection | PubMed |
description | INTRODUCTION: Intrinsic or acquired chemoresistance is a major problem in oncology. Although highly responsive to chemotherapies such as paclitaxel, most triple negative breast cancer (TNBC) patients develop chemoresistance. Here we investigate the role of BRCA1-IRIS as a novel treatment target for TNBCs and their paclitaxel-resistant recurrences. METHODS: We analyzed the response of BRCA1-IRIS overexpressing normal mammary cells or established TNBC cells silenced from BRCA1-IRIS to paclitaxel in vitro and in vivo. We analyzed BRCA1-IRIS downstream signaling pathways in relation to paclitaxel treatment. We also analyzed a large cohort of breast tumor samples for BRCA1-IRIS, Forkhead box class O3a (FOXO3a) and survivin expression. Finally, we analyzed the effect of BRCA1-IRIS silencing or inactivation on TNBCs formation, maintenance and response to paclitaxel in an orthotopic model. RESULTS: We show that low concentrations of paclitaxel triggers BRCA1-IRIS expression in vitro and in vivo, and that BRCA1-IRIS activates two autocrine signaling loops (epidermal growth factor (EGF)/EGF receptor 1 (EGFR)-EGF receptor 2 (ErbB2) and neurogulin 1 (NRG1)/ErbB2-EGF receptor 3 (ErbB3), which enhances protein kinase B (AKT) and thus survivin expression/activation through promoting FOXO3a degradation. This signaling pathway is intact in TNBCs endogenously overexpressing BRCA1-IRIS. These events trigger the intrinsic and acquired paclitaxel resistance phenotype known for BRCA1-IRIS-overexpressing TNBCs. Inactivating BRCA1-IRIS signaling using a novel inhibitory mimetic peptide inactivates these autocrine loops, AKT and survivin activity/expression, in part by restoring FOXO3a expression, and sensitizes TNBC cells to low paclitaxel concentrations in vitro and in vivo. Finally, we show BRCA1-IRIS and survivin overexpression is correlated with lack of FOXO3a expression in a large cohort of primary tumor samples, and that BRCA1-IRIS overexpression-induced signature is associated with decreased disease free survival in heavily treated estrogen receptor alpha-negative patients. CONCLUSIONS: In addition to driving TNBC tumor formation, BRCA1-IRIS overexpression drives their intrinsic and acquired paclitaxel resistance, partly by activating autocrine signaling loops EGF/EGFR-ErbB2 and NRG1/ErbB2-ErbB3. These loops activate AKT, causing FOXO3a degradation and survivin overexpression. Taken together, this underscores the need for BRCA1-IRIS-specific therapy and strongly suggests that BRCA1-IRIS and/or signaling loops activated by it could be rational therapeutic targets for advanced TNBCs. |
format | Online Article Text |
id | pubmed-4322455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43224552015-02-11 BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers Blanchard, Zannel Paul, Bibbin T Craft, Barbara ElShamy, Wael M Breast Cancer Res Research Article INTRODUCTION: Intrinsic or acquired chemoresistance is a major problem in oncology. Although highly responsive to chemotherapies such as paclitaxel, most triple negative breast cancer (TNBC) patients develop chemoresistance. Here we investigate the role of BRCA1-IRIS as a novel treatment target for TNBCs and their paclitaxel-resistant recurrences. METHODS: We analyzed the response of BRCA1-IRIS overexpressing normal mammary cells or established TNBC cells silenced from BRCA1-IRIS to paclitaxel in vitro and in vivo. We analyzed BRCA1-IRIS downstream signaling pathways in relation to paclitaxel treatment. We also analyzed a large cohort of breast tumor samples for BRCA1-IRIS, Forkhead box class O3a (FOXO3a) and survivin expression. Finally, we analyzed the effect of BRCA1-IRIS silencing or inactivation on TNBCs formation, maintenance and response to paclitaxel in an orthotopic model. RESULTS: We show that low concentrations of paclitaxel triggers BRCA1-IRIS expression in vitro and in vivo, and that BRCA1-IRIS activates two autocrine signaling loops (epidermal growth factor (EGF)/EGF receptor 1 (EGFR)-EGF receptor 2 (ErbB2) and neurogulin 1 (NRG1)/ErbB2-EGF receptor 3 (ErbB3), which enhances protein kinase B (AKT) and thus survivin expression/activation through promoting FOXO3a degradation. This signaling pathway is intact in TNBCs endogenously overexpressing BRCA1-IRIS. These events trigger the intrinsic and acquired paclitaxel resistance phenotype known for BRCA1-IRIS-overexpressing TNBCs. Inactivating BRCA1-IRIS signaling using a novel inhibitory mimetic peptide inactivates these autocrine loops, AKT and survivin activity/expression, in part by restoring FOXO3a expression, and sensitizes TNBC cells to low paclitaxel concentrations in vitro and in vivo. Finally, we show BRCA1-IRIS and survivin overexpression is correlated with lack of FOXO3a expression in a large cohort of primary tumor samples, and that BRCA1-IRIS overexpression-induced signature is associated with decreased disease free survival in heavily treated estrogen receptor alpha-negative patients. CONCLUSIONS: In addition to driving TNBC tumor formation, BRCA1-IRIS overexpression drives their intrinsic and acquired paclitaxel resistance, partly by activating autocrine signaling loops EGF/EGFR-ErbB2 and NRG1/ErbB2-ErbB3. These loops activate AKT, causing FOXO3a degradation and survivin overexpression. Taken together, this underscores the need for BRCA1-IRIS-specific therapy and strongly suggests that BRCA1-IRIS and/or signaling loops activated by it could be rational therapeutic targets for advanced TNBCs. BioMed Central 2015-01-13 2015 /pmc/articles/PMC4322455/ /pubmed/25583261 http://dx.doi.org/10.1186/s13058-014-0512-9 Text en © Blanchard et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Blanchard, Zannel Paul, Bibbin T Craft, Barbara ElShamy, Wael M BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title | BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title_full | BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title_fullStr | BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title_full_unstemmed | BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title_short | BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers |
title_sort | brca1-iris inactivation overcomes paclitaxel resistance in triple negative breast cancers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322455/ https://www.ncbi.nlm.nih.gov/pubmed/25583261 http://dx.doi.org/10.1186/s13058-014-0512-9 |
work_keys_str_mv | AT blanchardzannel brca1irisinactivationovercomespaclitaxelresistanceintriplenegativebreastcancers AT paulbibbint brca1irisinactivationovercomespaclitaxelresistanceintriplenegativebreastcancers AT craftbarbara brca1irisinactivationovercomespaclitaxelresistanceintriplenegativebreastcancers AT elshamywaelm brca1irisinactivationovercomespaclitaxelresistanceintriplenegativebreastcancers |