Cargando…

Molecular mechanisms of induced pluripotency

Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulcenty, Katarzyna, Wróblewska, Joanna, Mazurek, Sylwia, Liszewska, Ewa, Jaworski, Jacek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322534/
https://www.ncbi.nlm.nih.gov/pubmed/25691818
http://dx.doi.org/10.5114/wo.2014.47134
Descripción
Sumario:Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.