Cargando…

Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons

Longitudinal studies typically suffer from incompleteness of data. Attrition is a major problem in studies of older persons since participants may die during the study or are too frail to participate in follow-up examinations. Attrition is typically related to an individual’s health; therefore, igno...

Descripción completa

Detalles Bibliográficos
Autores principales: Lavikainen, Piia, Leskinen, Esko, Hartikainen, Sirpa, Möttönen, Jyrki, Sulkava, Raimo, Korhonen, Maarit J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323142/
https://www.ncbi.nlm.nih.gov/pubmed/25678815
http://dx.doi.org/10.2147/CLEP.S72918
_version_ 1782356500342112256
author Lavikainen, Piia
Leskinen, Esko
Hartikainen, Sirpa
Möttönen, Jyrki
Sulkava, Raimo
Korhonen, Maarit J
author_facet Lavikainen, Piia
Leskinen, Esko
Hartikainen, Sirpa
Möttönen, Jyrki
Sulkava, Raimo
Korhonen, Maarit J
author_sort Lavikainen, Piia
collection PubMed
description Longitudinal studies typically suffer from incompleteness of data. Attrition is a major problem in studies of older persons since participants may die during the study or are too frail to participate in follow-up examinations. Attrition is typically related to an individual’s health; therefore, ignoring it may lead to too optimistic inferences, for example, about cognitive decline or changes in polypharmacy. The objective of this study is to compare the estimates of level and slope of change in 1) cognitive function and 2) number of drugs in use between the assumptions of ignorable and non-ignorable missingness. This study demonstrates the usefulness of latent variable modeling framework. The results suggest that when the missing data mechanism is not known, it is preferable to conduct analyses both under ignorable and non-ignorable missing data assumptions.
format Online
Article
Text
id pubmed-4323142
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-43231422015-02-12 Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons Lavikainen, Piia Leskinen, Esko Hartikainen, Sirpa Möttönen, Jyrki Sulkava, Raimo Korhonen, Maarit J Clin Epidemiol Original Research Longitudinal studies typically suffer from incompleteness of data. Attrition is a major problem in studies of older persons since participants may die during the study or are too frail to participate in follow-up examinations. Attrition is typically related to an individual’s health; therefore, ignoring it may lead to too optimistic inferences, for example, about cognitive decline or changes in polypharmacy. The objective of this study is to compare the estimates of level and slope of change in 1) cognitive function and 2) number of drugs in use between the assumptions of ignorable and non-ignorable missingness. This study demonstrates the usefulness of latent variable modeling framework. The results suggest that when the missing data mechanism is not known, it is preferable to conduct analyses both under ignorable and non-ignorable missing data assumptions. Dove Medical Press 2015-02-04 /pmc/articles/PMC4323142/ /pubmed/25678815 http://dx.doi.org/10.2147/CLEP.S72918 Text en © 2015 Lavikainen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
spellingShingle Original Research
Lavikainen, Piia
Leskinen, Esko
Hartikainen, Sirpa
Möttönen, Jyrki
Sulkava, Raimo
Korhonen, Maarit J
Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title_full Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title_fullStr Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title_full_unstemmed Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title_short Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
title_sort impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323142/
https://www.ncbi.nlm.nih.gov/pubmed/25678815
http://dx.doi.org/10.2147/CLEP.S72918
work_keys_str_mv AT lavikainenpiia impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons
AT leskinenesko impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons
AT hartikainensirpa impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons
AT mottonenjyrki impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons
AT sulkavaraimo impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons
AT korhonenmaaritj impactofmissingdatamechanismontheestimateofchangeacasestudyoncognitivefunctionandpolypharmacyamongolderpersons