Cargando…
Heat-Passing Framework for Robust Interpretation of Data in Networks
Researchers are regularly interested in interpreting the multipartite structure of data entities according to their functional relationships. Data is often heterogeneous with intricately hidden inner structure. With limited prior knowledge, researchers are likely to confront the problem of transform...
Autores principales: | Fang, Yi, Sun, Mengtian, Ramani, Karthik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323200/ https://www.ncbi.nlm.nih.gov/pubmed/25668316 http://dx.doi.org/10.1371/journal.pone.0116121 |
Ejemplares similares
-
Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network
por: Fang, Yi, et al.
Publicado: (2011) -
Pass-Fail Testing: Statistical Requirements and Interpretations
por: Gilliam, David, et al.
Publicado: (2009) -
Low-Pass Image Filtering to Achieve Adversarial Robustness
por: Ziyadinov, Vadim, et al.
Publicado: (2023) -
A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Tradeoff on Phenotype Robustness in Biological Networks Part II: Ecological Networks
por: Chen, Bor-Sen, et al.
Publicado: (2013) -
Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated With Type 2 Diabetes
por: Gou, Wanglong, et al.
Publicado: (2021)