Cargando…

PKK Suppresses Tumor Growth and is Decreased in Squamous Cell Carcinoma of the Skin

Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also...

Descripción completa

Detalles Bibliográficos
Autores principales: Poligone, Brian, Gilmore, Elaine S., Alexander, Carolina, Oleksyn, David, Gillespie, Kathleen, Zhao, Jiyong, Ibrahim, Sherrif, Pentland, Alice P., Brown, Marc, Chen, Luojing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324088/
https://www.ncbi.nlm.nih.gov/pubmed/25285922
http://dx.doi.org/10.1038/jid.2014.428
Descripción
Sumario:Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments.