Cargando…
Automated Training for Algorithms That Learn from Genomic Data
Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not inc...
Autores principales: | Cilingir, Gokcen, Broschat, Shira L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324891/ https://www.ncbi.nlm.nih.gov/pubmed/25695053 http://dx.doi.org/10.1155/2015/234236 |
Ejemplares similares
-
ApicoAP: The First Computational Model for Identifying Apicoplast-Targeted Proteins in Multiple Species of Apicomplexa
por: Cilingir, Gokcen, et al.
Publicado: (2012) -
Comparative genomics reveals multiple pathways to mutualism for tick-borne pathogens
por: Lockwood, Svetlana, et al.
Publicado: (2016) -
Alignment-free clustering of large data sets of unannotated protein conserved regions using minhashing
por: Abnousi, Armen, et al.
Publicado: (2018) -
Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila
por: Esna Ashari, Zhila, et al.
Publicado: (2019) -
Using Protein Clusters from Whole Proteomes to Construct and Augment a Dendrogram
por: Zhou, Yunyun, et al.
Publicado: (2013)