Cargando…

Estimation of the parameters of ETAS models by Simulated Annealing

This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is te...

Descripción completa

Detalles Bibliográficos
Autor principal: Lombardi, Anna Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325320/
https://www.ncbi.nlm.nih.gov/pubmed/25673036
http://dx.doi.org/10.1038/srep08417
_version_ 1782356791450927104
author Lombardi, Anna Maria
author_facet Lombardi, Anna Maria
author_sort Lombardi, Anna Maria
collection PubMed
description This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context.
format Online
Article
Text
id pubmed-4325320
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-43253202015-02-20 Estimation of the parameters of ETAS models by Simulated Annealing Lombardi, Anna Maria Sci Rep Article This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. Nature Publishing Group 2015-02-12 /pmc/articles/PMC4325320/ /pubmed/25673036 http://dx.doi.org/10.1038/srep08417 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lombardi, Anna Maria
Estimation of the parameters of ETAS models by Simulated Annealing
title Estimation of the parameters of ETAS models by Simulated Annealing
title_full Estimation of the parameters of ETAS models by Simulated Annealing
title_fullStr Estimation of the parameters of ETAS models by Simulated Annealing
title_full_unstemmed Estimation of the parameters of ETAS models by Simulated Annealing
title_short Estimation of the parameters of ETAS models by Simulated Annealing
title_sort estimation of the parameters of etas models by simulated annealing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325320/
https://www.ncbi.nlm.nih.gov/pubmed/25673036
http://dx.doi.org/10.1038/srep08417
work_keys_str_mv AT lombardiannamaria estimationoftheparametersofetasmodelsbysimulatedannealing