Cargando…
Statistical significance of variables driving systematic variation in high-dimensional data
Motivation: There are a number of well-established methods such as principal component analysis (PCA) for automatically capturing systematic variation due to latent variables in large-scale genomic data. PCA and related methods may directly provide a quantitative characterization of a complex biolog...
Autores principales: | Chung, Neo Christopher, Storey, John D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325543/ https://www.ncbi.nlm.nih.gov/pubmed/25336500 http://dx.doi.org/10.1093/bioinformatics/btu674 |
Ejemplares similares
-
Statistical significance of cluster membership for unsupervised evaluation of cell identities
por: Chung, Neo Christopher
Publicado: (2020) -
Stochastic variational variable selection for high-dimensional microbiome data
por: Dang, Tung, et al.
Publicado: (2022) -
Statistics for High-Dimensional Data
por: Bühlmann, Peter, et al.
Publicado: (2011) -
Statistical Analysis of High-Dimensional Genetic Data in Complex Traits
por: Park, Taesung, et al.
Publicado: (2015) -
Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014
por: Frigessi, Arnoldo, et al.
Publicado: (2016)