Cargando…
Seed: a user-friendly tool for exploring and visualizing microbial community data
Summary: In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325548/ https://www.ncbi.nlm.nih.gov/pubmed/25332377 http://dx.doi.org/10.1093/bioinformatics/btu693 |
_version_ | 1782356824550277120 |
---|---|
author | Beck, Daniel Dennis, Christopher Foster, James A. |
author_facet | Beck, Daniel Dennis, Christopher Foster, James A. |
author_sort | Beck, Daniel |
collection | PubMed |
description | Summary: In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to explore ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal clustering and heatmaps. Availability and implementation: Seed is open source and available at https://github.com/danlbek/Seed. Contact: danlbek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-4325548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43255482015-03-02 Seed: a user-friendly tool for exploring and visualizing microbial community data Beck, Daniel Dennis, Christopher Foster, James A. Bioinformatics Applications Notes Summary: In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to explore ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal clustering and heatmaps. Availability and implementation: Seed is open source and available at https://github.com/danlbek/Seed. Contact: danlbek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2015-02-15 2014-10-20 /pmc/articles/PMC4325548/ /pubmed/25332377 http://dx.doi.org/10.1093/bioinformatics/btu693 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Notes Beck, Daniel Dennis, Christopher Foster, James A. Seed: a user-friendly tool for exploring and visualizing microbial community data |
title | Seed: a user-friendly tool for exploring and visualizing microbial community data |
title_full | Seed: a user-friendly tool for exploring and visualizing microbial community data |
title_fullStr | Seed: a user-friendly tool for exploring and visualizing microbial community data |
title_full_unstemmed | Seed: a user-friendly tool for exploring and visualizing microbial community data |
title_short | Seed: a user-friendly tool for exploring and visualizing microbial community data |
title_sort | seed: a user-friendly tool for exploring and visualizing microbial community data |
topic | Applications Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325548/ https://www.ncbi.nlm.nih.gov/pubmed/25332377 http://dx.doi.org/10.1093/bioinformatics/btu693 |
work_keys_str_mv | AT beckdaniel seedauserfriendlytoolforexploringandvisualizingmicrobialcommunitydata AT dennischristopher seedauserfriendlytoolforexploringandvisualizingmicrobialcommunitydata AT fosterjamesa seedauserfriendlytoolforexploringandvisualizingmicrobialcommunitydata |