Cargando…
Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer
BACKGROUND: Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. OBJECTIVE: To develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial reso...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pulsus Group Inc
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325887/ https://www.ncbi.nlm.nih.gov/pubmed/25664539 |
_version_ | 1782356857881362432 |
---|---|
author | Finocchietti, Sara Graven-Nielsen, Thomas Arendt-Nielsen, Lars |
author_facet | Finocchietti, Sara Graven-Nielsen, Thomas Arendt-Nielsen, Lars |
author_sort | Finocchietti, Sara |
collection | PubMed |
description | BACKGROUND: Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. OBJECTIVE: To develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial resolution that provides complementary information compared with information obtained by traditional static pressure algometry. METHODS: The dynamic pressure algometer was tested bilaterally on the tibialis anterior muscle in 15 healthy subjects and compared with static pressure algometry. The device consisted of a wheel that was rolled over the muscle tissue with a fixed velocity and different predefined forces. The pain threshold force was determined and pain intensity to a fixed-force stimulation was continuously rated on a visual analogue scale while the wheel was rolling over the muscle. The pressure pain sensitivity was evaluated before, during, and after muscle pain and hyperalgesia induced unilaterally by either injection of hypertonic saline (0.5 mL, 6%) into the tibialis anterior or eccentric exercise evoking delayed-onset muscle soreness (DOMS). RESULTS: The intraclass correlation coefficient was >0.88 for the dynamic thresholds; thus, the method was reliable. Compared with baseline, both techniques detected hyperalgesia at the saline injection site and during DOMS (P<0.05). The dynamic algometer also detected the widespread, patchy distribution of sensitive loci during DOMS, which was difficult to evaluate using static pressure algometry. DISCUSSION AND CONCLUSION: The present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies. |
format | Online Article Text |
id | pubmed-4325887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Pulsus Group Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-43258872015-02-26 Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer Finocchietti, Sara Graven-Nielsen, Thomas Arendt-Nielsen, Lars Pain Res Manag Original Article BACKGROUND: Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. OBJECTIVE: To develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial resolution that provides complementary information compared with information obtained by traditional static pressure algometry. METHODS: The dynamic pressure algometer was tested bilaterally on the tibialis anterior muscle in 15 healthy subjects and compared with static pressure algometry. The device consisted of a wheel that was rolled over the muscle tissue with a fixed velocity and different predefined forces. The pain threshold force was determined and pain intensity to a fixed-force stimulation was continuously rated on a visual analogue scale while the wheel was rolling over the muscle. The pressure pain sensitivity was evaluated before, during, and after muscle pain and hyperalgesia induced unilaterally by either injection of hypertonic saline (0.5 mL, 6%) into the tibialis anterior or eccentric exercise evoking delayed-onset muscle soreness (DOMS). RESULTS: The intraclass correlation coefficient was >0.88 for the dynamic thresholds; thus, the method was reliable. Compared with baseline, both techniques detected hyperalgesia at the saline injection site and during DOMS (P<0.05). The dynamic algometer also detected the widespread, patchy distribution of sensitive loci during DOMS, which was difficult to evaluate using static pressure algometry. DISCUSSION AND CONCLUSION: The present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies. Pulsus Group Inc 2015 /pmc/articles/PMC4325887/ /pubmed/25664539 Text en © 2015, Pulsus Group Inc. All rights reserved This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact support@pulsus.com |
spellingShingle | Original Article Finocchietti, Sara Graven-Nielsen, Thomas Arendt-Nielsen, Lars Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title | Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title_full | Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title_fullStr | Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title_full_unstemmed | Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title_short | Dynamic mechanical assessment of muscle hyperalgesia in humans: The dynamic algometer |
title_sort | dynamic mechanical assessment of muscle hyperalgesia in humans: the dynamic algometer |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325887/ https://www.ncbi.nlm.nih.gov/pubmed/25664539 |
work_keys_str_mv | AT finocchiettisara dynamicmechanicalassessmentofmusclehyperalgesiainhumansthedynamicalgometer AT gravennielsenthomas dynamicmechanicalassessmentofmusclehyperalgesiainhumansthedynamicalgometer AT arendtnielsenlars dynamicmechanicalassessmentofmusclehyperalgesiainhumansthedynamicalgometer |