Cargando…
Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation
Restorative brain-computer interfaces (BCI) are increasingly used to provide feedback of neuronal states in a bid to normalize pathological brain activity and achieve behavioral gains. However, patients and healthy subjects alike often show a large variability, or even inability, of brain self-regul...
Autores principales: | Bauer, Robert, Gharabaghi, Alireza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325901/ https://www.ncbi.nlm.nih.gov/pubmed/25729347 http://dx.doi.org/10.3389/fnins.2015.00036 |
Ejemplares similares
-
What Turns Assistive into Restorative Brain-Machine Interfaces?
por: Gharabaghi, Alireza
Publicado: (2016) -
Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces
por: Bauer, Robert, et al.
Publicado: (2015) -
Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration
por: Bauer, Robert, et al.
Publicado: (2017) -
Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke
por: Naros, Georgios, et al.
Publicado: (2015) -
Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation
por: Brauchle, Daniel, et al.
Publicado: (2015)