Cargando…
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons
The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell...
Autores principales: | Probst, Dimitri, Petrovici, Mihai A., Bytschok, Ilja, Bill, Johannes, Pecevski, Dejan, Schemmel, Johannes, Meier, Karlheinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325917/ https://www.ncbi.nlm.nih.gov/pubmed/25729361 http://dx.doi.org/10.3389/fncom.2015.00013 |
Ejemplares similares
-
The high-conductance state enables neural sampling in networks of LIF neurons
por: Petrovici, Mihai A, et al.
Publicado: (2015) -
Deterministic neural networks as sources of uncorrelated noise for probabilistic computations
por: Jordan, Jakob, et al.
Publicado: (2015) -
Spiking neurons with short-term synaptic plasticity form superior generative networks
por: Leng, Luziwei, et al.
Publicado: (2018) -
Deterministic networks for probabilistic computing
por: Jordan, Jakob, et al.
Publicado: (2019) -
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
por: Pecevski, Dejan, et al.
Publicado: (2016)