Cargando…

Inhibition of miR-191 contributes to radiation-resistance of two lung cancer cell lines by altering autophagy activity

BACKGROUND: Lung cancer is the leading cause of cancer-related morbidity and mortality all over the world. Surgery resection, radiotherapy, chemotherapy, immunotherapy and combined treatments have been discovered and well established for treatments. However, low survival rate of five years after cli...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhenkuan, Huang, Shaoxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326374/
https://www.ncbi.nlm.nih.gov/pubmed/25685068
http://dx.doi.org/10.1186/s12935-015-0165-5
Descripción
Sumario:BACKGROUND: Lung cancer is the leading cause of cancer-related morbidity and mortality all over the world. Surgery resection, radiotherapy, chemotherapy, immunotherapy and combined treatments have been discovered and well established for treatments. However, low survival rate of five years after clinical treatments mainly due to recurrence of stress-resistant cancer cells calls for better understanding and new ideas. Our project aimed to understand the forming process of stress resistant lung cancer cells after radiotherapy. METHODS: Two classic non-small cell lung cancer (NSCLC) cell lines A549 and H1299 initially were radiated with a (137)Cs gamma-ray source with doses ranging from 0 to 12 Gy to generate radiation-resistant cancer cells. 8 Gy of radiation was regard as a standard dosage since it provides effective killing as well as good amount of survivals. The expression levels of autophagy-related proteins including Beclin-1, LC3-II and p62 were studied and measured by both western blot and quantitative real-time polymerase chain reaction (real-time RT-PCR). RESULTS: Increased Beclin-1, LC3-II and decreased p62 have been observed in radiation-resistant cells indicating elevated autophagy level. Decreased miR-191 in radiation-resistant cells performed by Taqman qRT-PCR also has been seen. Two binding sites between Beclin-1 and miR-191 suggest potential association between. CONCLUSIONS: It is reasonable to speculate that inhibition of miR-191 expression in lung cancer cells would contribute to the establishment of radiation-resistant cells via mediating cellular autophagy. Therefore, miR-191 is a potential target for therapy in treating radiation-resistant lung cancer.