Cargando…

Rapid Microbial Sample Preparation from Blood Using a Novel Concentration Device

Appropriate care for bacteremic patients is dictated by the amount of time needed for an accurate diagnosis. However, the concentration of microbes in the blood is extremely low in these patients (1–100 CFU/mL), traditionally requiring growth (blood culture) or amplification (e.g., PCR) for detectio...

Descripción completa

Detalles Bibliográficos
Autores principales: Boardman, Anna K., Campbell, Jennifer, Wirz, Holger, Sharon, Andre, Sauer-Budge, Alexis F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326418/
https://www.ncbi.nlm.nih.gov/pubmed/25675242
http://dx.doi.org/10.1371/journal.pone.0116837
Descripción
Sumario:Appropriate care for bacteremic patients is dictated by the amount of time needed for an accurate diagnosis. However, the concentration of microbes in the blood is extremely low in these patients (1–100 CFU/mL), traditionally requiring growth (blood culture) or amplification (e.g., PCR) for detection. Current culture-based methods can take a minimum of two days, while faster methods like PCR require a sample free of inhibitors (i.e., blood components). Though commercial kits exist for the removal of blood from these samples, they typically capture only DNA, thereby necessitating the use of blood culture for antimicrobial testing. Here, we report a novel, scaled-up sample preparation protocol carried out in a new microbial concentration device. The process can efficiently lyse 10 mL of bacteremic blood while maintaining the microorganisms’ viability, giving a 30‑μL final output volume. A suite of six microorganisms (Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa, and Candida albicans) at a range of clinically relevant concentrations was tested. All of the microorganisms had recoveries greater than 55% at the highest tested concentration of 100 CFU/mL, with three of them having over 70% recovery. At the lowest tested concentration of 3 CFU/mL, two microorganisms had recoveries of ca. 40–50% while the other four gave recoveries greater than 70%. Using a Taqman assay for methicillin-sensitive S. aureus (MSSA)to prove the feasibility of downstream analysis, we show that our microbial pellets are clean enough for PCR amplification. PCR testing of 56 spiked-positive and negative samples gave a specificity of 0.97 and a sensitivity of 0.96, showing that our sample preparation protocol holds great promise for the rapid diagnosis of bacteremia directly from a primary sample.