Cargando…
Differential co-expression network centrality and machine learning feature selection for identifying susceptibility hubs in networks with scale-free structure
BACKGROUND: Biological insights into group differences, such as disease status, have been achieved through differential co-expression analysis of microarray data. Additional understanding of group differences may be achieved by integrating the connectivity structure of the differential co-expression...
Autores principales: | Lareau, Caleb A, White, Bill C, Oberg, Ann L, McKinney, Brett A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326454/ https://www.ncbi.nlm.nih.gov/pubmed/25685197 http://dx.doi.org/10.1186/s13040-015-0040-x |
Ejemplares similares
-
The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine
por: McKinney, Brett A., et al.
Publicado: (2016) -
dcVar: a method for identifying common variants that modulate differential correlation structures in gene expression data
por: Lareau, Caleb A., et al.
Publicado: (2015) -
Recursive Indirect-Paths Modularity (RIP-M) for Detecting Community Structure in RNA-Seq Co-expression Networks
por: Rahmani, Bahareh, et al.
Publicado: (2016) -
ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data
por: McKinney, Brett A., et al.
Publicado: (2013) -
Scale-integrated Network Hubs of the White Matter Structural Network
por: Kwon, Hunki, et al.
Publicado: (2017)