Cargando…
miR-122 Stimulates Hepatitis C Virus RNA Synthesis by Altering the Balance of Viral RNAs Engaged in Replication versus Translation
The liver-specific microRNA, miR-122, stabilizes hepatitis C virus (HCV) RNA genomes by recruiting host argonaute 2 (AGO2) to the 5′ end and preventing decay mediated by exonuclease Xrn1. However, HCV replication requires miR-122 in Xrn1-depleted cells, indicating additional functions. We show that...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326553/ https://www.ncbi.nlm.nih.gov/pubmed/25662750 http://dx.doi.org/10.1016/j.chom.2014.12.014 |
Sumario: | The liver-specific microRNA, miR-122, stabilizes hepatitis C virus (HCV) RNA genomes by recruiting host argonaute 2 (AGO2) to the 5′ end and preventing decay mediated by exonuclease Xrn1. However, HCV replication requires miR-122 in Xrn1-depleted cells, indicating additional functions. We show that miR-122 enhances HCV RNA levels by altering the fraction of HCV genomes available for RNA synthesis. Exogenous miR-122 increases viral RNA and protein levels in Xrn1-depleted cells, with enhanced RNA synthesis occurring before heightened protein synthesis. Inhibiting protein translation with puromycin blocks miR-122-mediated increases in RNA synthesis, but independently enhances RNA synthesis by releasing ribosomes from viral genomes. Additionally, miR-122 reduces the fraction of viral genomes engaged in protein translation. Depleting AGO2 or PCBP2, which binds HCV RNA in competition with miR-122 and promotes translation, eliminates miR-122 stimulation of RNA synthesis. Thus, by displacing PCBP2, miR-122 reduces HCV genomes engaged in translation while increasing the fraction available for RNA synthesis. |
---|