Cargando…
Mitochondrial energetics is impaired in vivo in aged skeletal muscle
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging re...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326861/ https://www.ncbi.nlm.nih.gov/pubmed/23919652 http://dx.doi.org/10.1111/acel.12147 |
_version_ | 1782356966498107392 |
---|---|
author | Gouspillou, Gilles Bourdel-Marchasson, Isabelle Rouland, Richard Calmettes, Guillaume Biran, Marc Deschodt-Arsac, Véronique Miraux, Sylvain Thiaudiere, Eric Pasdois, Philippe Detaille, Dominique Franconi, Jean-Michel Babot, Marion Trézéguet, Véronique Arsac, Laurent Diolez, Philippe |
author_facet | Gouspillou, Gilles Bourdel-Marchasson, Isabelle Rouland, Richard Calmettes, Guillaume Biran, Marc Deschodt-Arsac, Véronique Miraux, Sylvain Thiaudiere, Eric Pasdois, Philippe Detaille, Dominique Franconi, Jean-Michel Babot, Marion Trézéguet, Véronique Arsac, Laurent Diolez, Philippe |
author_sort | Gouspillou, Gilles |
collection | PubMed |
description | With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with (31)P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon. |
format | Online Article Text |
id | pubmed-4326861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43268612015-02-19 Mitochondrial energetics is impaired in vivo in aged skeletal muscle Gouspillou, Gilles Bourdel-Marchasson, Isabelle Rouland, Richard Calmettes, Guillaume Biran, Marc Deschodt-Arsac, Véronique Miraux, Sylvain Thiaudiere, Eric Pasdois, Philippe Detaille, Dominique Franconi, Jean-Michel Babot, Marion Trézéguet, Véronique Arsac, Laurent Diolez, Philippe Aging Cell Original Articles With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with (31)P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon. BlackWell Publishing Ltd 2014-02 2013-09-19 /pmc/articles/PMC4326861/ /pubmed/23919652 http://dx.doi.org/10.1111/acel.12147 Text en © 2013 the Anatomical Society and John Wiley & Sons Ltd |
spellingShingle | Original Articles Gouspillou, Gilles Bourdel-Marchasson, Isabelle Rouland, Richard Calmettes, Guillaume Biran, Marc Deschodt-Arsac, Véronique Miraux, Sylvain Thiaudiere, Eric Pasdois, Philippe Detaille, Dominique Franconi, Jean-Michel Babot, Marion Trézéguet, Véronique Arsac, Laurent Diolez, Philippe Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title | Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title_full | Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title_fullStr | Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title_full_unstemmed | Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title_short | Mitochondrial energetics is impaired in vivo in aged skeletal muscle |
title_sort | mitochondrial energetics is impaired in vivo in aged skeletal muscle |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326861/ https://www.ncbi.nlm.nih.gov/pubmed/23919652 http://dx.doi.org/10.1111/acel.12147 |
work_keys_str_mv | AT gouspillougilles mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT bourdelmarchassonisabelle mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT roulandrichard mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT calmettesguillaume mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT biranmarc mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT deschodtarsacveronique mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT mirauxsylvain mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT thiaudiereeric mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT pasdoisphilippe mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT detailledominique mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT franconijeanmichel mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT babotmarion mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT trezeguetveronique mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT arsaclaurent mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle AT diolezphilippe mitochondrialenergeticsisimpairedinvivoinagedskeletalmuscle |