Cargando…
Pseudo Optimization of E-Nose Data Using Region Selection with Feature Feedback Based on Regularized Linear Discriminant Analysis
In this paper, we present a pseudo optimization method for electronic nose (e-nose) data using region selection with feature feedback based on regularized linear discriminant analysis (R-LDA) to enhance the performance and cost functions of an e-nose system. To implement cost- and performance-effect...
Autores principales: | Jeong, Gu-Min, Nghia, Nguyen Trong, Choi, Sang-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327041/ https://www.ncbi.nlm.nih.gov/pubmed/25559000 http://dx.doi.org/10.3390/s150100656 |
Ejemplares similares
-
Regularized Linear Discriminant Analysis of EEG Features in Dementia Patients
por: Neto, Emanuel, et al.
Publicado: (2016) -
Data Refinement and Channel Selection for a Portable E-Nose System by the Use of Feature Feedback
por: Choi, Sang-Il, et al.
Publicado: (2010) -
Classification of Odorants in the Vapor Phase Using Composite Features for a Portable E-Nose System
por: Choi, Sang-Il, et al.
Publicado: (2012) -
A “Regular’s” Opinion of the Pseudo-Homœopath
por: Cathell,
Publicado: (1882) -
Pseudo-regularly varying functions and generalized renewal processes
por: Buldygin, Valeriĭ V, et al.
Publicado: (2018)