Cargando…

Ferrocene-Functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: A Novel Design in Conducting Polymer-Based Electrochemical Biosensors

Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayranci, Rukiye, Demirkol, Dilek Odaci, Ak, Metin, Timur, Suna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327083/
https://www.ncbi.nlm.nih.gov/pubmed/25591169
http://dx.doi.org/10.3390/s150101389
Descripción
Sumario:Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method.