Cargando…
Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View
The Microsoft Kinect sensor has gained attention as a tool for gait analysis for several years. Despite the many advantages the sensor provides, however, the lack of a native capability to extract joints from the side view of a human body still limits the adoption of the device to a number of releva...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327085/ https://www.ncbi.nlm.nih.gov/pubmed/25594588 http://dx.doi.org/10.3390/s150101417 |
_version_ | 1782357010324389888 |
---|---|
author | Cippitelli, Enea Gasparrini, Samuele Spinsante, Susanna Gambi, Ennio |
author_facet | Cippitelli, Enea Gasparrini, Samuele Spinsante, Susanna Gambi, Ennio |
author_sort | Cippitelli, Enea |
collection | PubMed |
description | The Microsoft Kinect sensor has gained attention as a tool for gait analysis for several years. Despite the many advantages the sensor provides, however, the lack of a native capability to extract joints from the side view of a human body still limits the adoption of the device to a number of relevant applications. This paper presents an algorithm to locate and estimate the trajectories of up to six joints extracted from the side depth view of a human body captured by the Kinect device. The algorithm is then applied to extract data that can be exploited to provide an objective score for the “Get Up and Go Test”, which is typically adopted for gait analysis in rehabilitation fields. Starting from the depth-data stream provided by the Microsoft Kinect sensor, the proposed algorithm relies on anthropometric models only, to locate and identify the positions of the joints. Differently from machine learning approaches, this solution avoids complex computations, which usually require significant resources. The reliability of the information about the joint position output by the algorithm is evaluated by comparison to a marker-based system. Tests show that the trajectories extracted by the proposed algorithm adhere to the reference curves better than the ones obtained from the skeleton generated by the native applications provided within the Microsoft Kinect (Microsoft Corporation, Redmond, WA, USA, 2013) and OpenNI (OpenNI organization, Tel Aviv, Israel, 2013) Software Development Kits. |
format | Online Article Text |
id | pubmed-4327085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-43270852015-02-23 Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View Cippitelli, Enea Gasparrini, Samuele Spinsante, Susanna Gambi, Ennio Sensors (Basel) Article The Microsoft Kinect sensor has gained attention as a tool for gait analysis for several years. Despite the many advantages the sensor provides, however, the lack of a native capability to extract joints from the side view of a human body still limits the adoption of the device to a number of relevant applications. This paper presents an algorithm to locate and estimate the trajectories of up to six joints extracted from the side depth view of a human body captured by the Kinect device. The algorithm is then applied to extract data that can be exploited to provide an objective score for the “Get Up and Go Test”, which is typically adopted for gait analysis in rehabilitation fields. Starting from the depth-data stream provided by the Microsoft Kinect sensor, the proposed algorithm relies on anthropometric models only, to locate and identify the positions of the joints. Differently from machine learning approaches, this solution avoids complex computations, which usually require significant resources. The reliability of the information about the joint position output by the algorithm is evaluated by comparison to a marker-based system. Tests show that the trajectories extracted by the proposed algorithm adhere to the reference curves better than the ones obtained from the skeleton generated by the native applications provided within the Microsoft Kinect (Microsoft Corporation, Redmond, WA, USA, 2013) and OpenNI (OpenNI organization, Tel Aviv, Israel, 2013) Software Development Kits. MDPI 2015-01-14 /pmc/articles/PMC4327085/ /pubmed/25594588 http://dx.doi.org/10.3390/s150101417 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cippitelli, Enea Gasparrini, Samuele Spinsante, Susanna Gambi, Ennio Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title | Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title_full | Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title_fullStr | Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title_full_unstemmed | Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title_short | Kinect as a Tool for Gait Analysis: Validation of a Real-Time Joint Extraction Algorithm Working in Side View |
title_sort | kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327085/ https://www.ncbi.nlm.nih.gov/pubmed/25594588 http://dx.doi.org/10.3390/s150101417 |
work_keys_str_mv | AT cippitellienea kinectasatoolforgaitanalysisvalidationofarealtimejointextractionalgorithmworkinginsideview AT gasparrinisamuele kinectasatoolforgaitanalysisvalidationofarealtimejointextractionalgorithmworkinginsideview AT spinsantesusanna kinectasatoolforgaitanalysisvalidationofarealtimejointextractionalgorithmworkinginsideview AT gambiennio kinectasatoolforgaitanalysisvalidationofarealtimejointextractionalgorithmworkinginsideview |