Cargando…
Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition
The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-re...
Autor principal: | Wang, Kun-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327087/ https://www.ncbi.nlm.nih.gov/pubmed/25594590 http://dx.doi.org/10.3390/s150101458 |
Ejemplares similares
-
The Feature Extraction Based on Texture Image Information for Emotion Sensing in Speech
por: Wang, Kun-Ching
Publicado: (2014) -
Affective Latent Representation of Acoustic and Lexical Features for Emotion Recognition
por: Kim, Eesung, et al.
Publicado: (2020) -
Research on Chinese Speech Emotion Recognition Based on Deep Neural Network and Acoustic Features
por: Lee, Ming-Che, et al.
Publicado: (2022) -
Vector learning representation for generalized speech emotion recognition
por: Singkul, Sattaya, et al.
Publicado: (2022) -
Sentiment Analysis and Emotion Recognition from Speech Using Universal Speech Representations
por: Atmaja, Bagus Tris, et al.
Publicado: (2022)