Cargando…
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspec...
Autores principales: | Huang, Wei, Xiao, Liang, Liu, Hongyi, Wei, Zhihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327116/ https://www.ncbi.nlm.nih.gov/pubmed/25608212 http://dx.doi.org/10.3390/s150102041 |
Ejemplares similares
-
Spatially and Spectrally Concatenated Neural Networks for Efficient Lossless Compression of Hyperspectral Imagery
por: Jiang, Zhuocheng, et al.
Publicado: (2020) -
Hyperspectral Imagery Super-Resolution by Adaptive POCS and Blur Metric
por: Hu, Shaoxing, et al.
Publicado: (2017) -
A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm
por: Xu, Ping, et al.
Publicado: (2018) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Spectral Representation via Data-Guided Sparsity for Hyperspectral Image Super-Resolution †
por: Han, Xian-Hua, et al.
Publicado: (2019)