Cargando…
Neural stem/progenitor cells react to non-glial cns neoplasms
It is well established that the normal human brain contains populations of neural stem/progenitor cells. Recent studies suggest that they migrate toward a variety of CNS tissue injuries. In an investigation of the potential role of neural stem cells in the pathogenesis of primary CNS lymphomas (NHL-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328003/ https://www.ncbi.nlm.nih.gov/pubmed/25713758 http://dx.doi.org/10.1186/s40064-015-0807-z |
Sumario: | It is well established that the normal human brain contains populations of neural stem/progenitor cells. Recent studies suggest that they migrate toward a variety of CNS tissue injuries. In an investigation of the potential role of neural stem cells in the pathogenesis of primary CNS lymphomas (NHL-CNS), we observed that neural stem/progenitor cells appeared to accumulate at the border of the tumors with the brain and in the advancing edge of the tumors, in a pattern similar to that seen with reactive gliosis. We identified neural stem/progenitor cells using standard immunohistochemical markers thereof, including CD133, nestin, Group II Beta-tubulin, Musashi1, and the transcription factor Sox2, in neurosurgically obtained specimens of NHL-CNS metastatic carcinoma , and metastatic melanoma . We had similar results with each of these markers but found that Sox2 antibodies provided the clearest and most robust labeling of the cells at the borders of these non-glial tumors. To exclude that the immunoreactive cells were actually neoplastic, double-label immunohistochemistry for Sox2 and CD20 (for NHL-CNS), Sox2 and cytokeratin (CAM5.2, for carcinomas), or Sox2 and HMB45 (for melanomas) showed that in each tumor type, Sox2-immunoreactive cells adjacent to and among the tumor cells were separate from neoplastic cells. Sox2/GFAP double-labeling revealed a consistent pattern of Sox2 immunopositivity both in reactive GFAP-immunopositive astrocytes and in GFAP-negative cells, at the interface of tumor and non-neoplastic brain. These results suggest that neural stem/progenitor cells migrate to non-glial neoplasms in the CNS, are a source of reactive astrocytes, and that Sox2 is a reliable immunohistochemical marker for these cells. |
---|