Cargando…

Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis

Immunoparalysis is an important pathological mechanism in sepsis. However, an effective small molecule therapy is lacking. Here, we show that ouabain, a Na(+),K(+)-ATPase ligand, can reverse immunoparalysis in vitro, in vivo, and in clinical samples. Notably, the effect of ouabain was critically dep...

Descripción completa

Detalles Bibliográficos
Autores principales: Dan, Cao, Jinjun, Bian, Zi-Chun, Hua, Lin, Ma, Wei, Chen, Xu, Zhang, Ri, Zhou, Shun, Cheng, Wen-Zhu, Sun, Qing-Cai, Jiao, Wu, Yin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328645/
https://www.ncbi.nlm.nih.gov/pubmed/25535255
http://dx.doi.org/10.15252/emmm.201404797
Descripción
Sumario:Immunoparalysis is an important pathological mechanism in sepsis. However, an effective small molecule therapy is lacking. Here, we show that ouabain, a Na(+),K(+)-ATPase ligand, can reverse immunoparalysis in vitro, in vivo, and in clinical samples. Notably, the effect of ouabain was critically dependent on TNF-α expression. However, ouabain had opposing effects on the stability of TNF-α mRNA: Ouabain triggered miR-181 transcription, which promoted TNF-α mRNA degradation and induced immunoparalysis, and ouabain triggered the nuclear export of human antigen R (HuR), which stabilized TNF-α mRNA and suppressed immuno-paralysis. Interestingly, because the miR-181 binding site is located within the HuR binding site in the 3′-untranslated region of TNF-α, in ouabain-treated cells, HuR competed with miR-181 for binding to TNF-α mRNA and recruited TNF-α mRNA to stress granules, thereby stabilizing TNF-α mRNA and reversing immunoparalysis. Ouabain also induced GM-CSF and interferon-γ expression in a HuR-dependent manner. Hence, the fine-tuning of TNF-α mRNA stability by HuR and miR181 plays a crucial role in immunoparalysis, and Na(+),K(+)-ATPase ligands are promising agents for immunoparalysis therapy.