Cargando…
Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328976/ http://dx.doi.org/10.1186/1532-429X-17-S1-P234 |
_version_ | 1782357382575161344 |
---|---|
author | Lozoya, Rocio Cabrera Margeta, Jan Folgoc, Loic Le Komatsu, Yuki Berte, Benjamin Relan, Jatin S Cochet, Hubert Haïssaguerre, Michel Jaïs, Pierre Ayache, Nicholas Sermesant, Maxime |
author_facet | Lozoya, Rocio Cabrera Margeta, Jan Folgoc, Loic Le Komatsu, Yuki Berte, Benjamin Relan, Jatin S Cochet, Hubert Haïssaguerre, Michel Jaïs, Pierre Ayache, Nicholas Sermesant, Maxime |
author_sort | Lozoya, Rocio Cabrera |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-4328976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43289762015-02-15 Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach Lozoya, Rocio Cabrera Margeta, Jan Folgoc, Loic Le Komatsu, Yuki Berte, Benjamin Relan, Jatin S Cochet, Hubert Haïssaguerre, Michel Jaïs, Pierre Ayache, Nicholas Sermesant, Maxime J Cardiovasc Magn Reson Poster Presentation BioMed Central 2015-02-03 /pmc/articles/PMC4328976/ http://dx.doi.org/10.1186/1532-429X-17-S1-P234 Text en © Lozoya et al; licensee BioMed Central Ltd. 2015 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Poster Presentation Lozoya, Rocio Cabrera Margeta, Jan Folgoc, Loic Le Komatsu, Yuki Berte, Benjamin Relan, Jatin S Cochet, Hubert Haïssaguerre, Michel Jaïs, Pierre Ayache, Nicholas Sermesant, Maxime Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title | Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title_full | Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title_fullStr | Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title_full_unstemmed | Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title_short | Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
title_sort | local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach |
topic | Poster Presentation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328976/ http://dx.doi.org/10.1186/1532-429X-17-S1-P234 |
work_keys_str_mv | AT lozoyarociocabrera locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT margetajan locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT folgocloicle locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT komatsuyuki locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT bertebenjamin locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT relanjatins locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT cochethubert locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT haissaguerremichel locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT jaispierre locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT ayachenicholas locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach AT sermesantmaxime locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach |