Cargando…

Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach

Detalles Bibliográficos
Autores principales: Lozoya, Rocio Cabrera, Margeta, Jan, Folgoc, Loic Le, Komatsu, Yuki, Berte, Benjamin, Relan, Jatin S, Cochet, Hubert, Haïssaguerre, Michel, Jaïs, Pierre, Ayache, Nicholas, Sermesant, Maxime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328976/
http://dx.doi.org/10.1186/1532-429X-17-S1-P234
_version_ 1782357382575161344
author Lozoya, Rocio Cabrera
Margeta, Jan
Folgoc, Loic Le
Komatsu, Yuki
Berte, Benjamin
Relan, Jatin S
Cochet, Hubert
Haïssaguerre, Michel
Jaïs, Pierre
Ayache, Nicholas
Sermesant, Maxime
author_facet Lozoya, Rocio Cabrera
Margeta, Jan
Folgoc, Loic Le
Komatsu, Yuki
Berte, Benjamin
Relan, Jatin S
Cochet, Hubert
Haïssaguerre, Michel
Jaïs, Pierre
Ayache, Nicholas
Sermesant, Maxime
author_sort Lozoya, Rocio Cabrera
collection PubMed
description
format Online
Article
Text
id pubmed-4328976
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-43289762015-02-15 Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach Lozoya, Rocio Cabrera Margeta, Jan Folgoc, Loic Le Komatsu, Yuki Berte, Benjamin Relan, Jatin S Cochet, Hubert Haïssaguerre, Michel Jaïs, Pierre Ayache, Nicholas Sermesant, Maxime J Cardiovasc Magn Reson Poster Presentation BioMed Central 2015-02-03 /pmc/articles/PMC4328976/ http://dx.doi.org/10.1186/1532-429X-17-S1-P234 Text en © Lozoya et al; licensee BioMed Central Ltd. 2015 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Poster Presentation
Lozoya, Rocio Cabrera
Margeta, Jan
Folgoc, Loic Le
Komatsu, Yuki
Berte, Benjamin
Relan, Jatin S
Cochet, Hubert
Haïssaguerre, Michel
Jaïs, Pierre
Ayache, Nicholas
Sermesant, Maxime
Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title_full Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title_fullStr Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title_full_unstemmed Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title_short Local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
title_sort local late gadolinium enhancement features to identify the electrophysiological substrate of post-infarction ventricular tachycardia: a machine learning approach
topic Poster Presentation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4328976/
http://dx.doi.org/10.1186/1532-429X-17-S1-P234
work_keys_str_mv AT lozoyarociocabrera locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT margetajan locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT folgocloicle locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT komatsuyuki locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT bertebenjamin locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT relanjatins locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT cochethubert locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT haissaguerremichel locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT jaispierre locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT ayachenicholas locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach
AT sermesantmaxime locallategadoliniumenhancementfeaturestoidentifytheelectrophysiologicalsubstrateofpostinfarctionventriculartachycardiaamachinelearningapproach