Cargando…
Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles
BACKGROUND: For intraoperative imaging in operating theaters or preoperative imaging in clinics, compact and economic integration rather than large and expensive equipment is required to coregister structural and functional imaging. However, current technologies, such as those integrating optical an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329206/ https://www.ncbi.nlm.nih.gov/pubmed/25889863 http://dx.doi.org/10.1186/s12951-015-0069-5 |
_version_ | 1782357401902514176 |
---|---|
author | Chieh, Jen-Jie Huang, Kai-Wen Lee, Yi-Yan Wei, Wen-Chun |
author_facet | Chieh, Jen-Jie Huang, Kai-Wen Lee, Yi-Yan Wei, Wen-Chun |
author_sort | Chieh, Jen-Jie |
collection | PubMed |
description | BACKGROUND: For intraoperative imaging in operating theaters or preoperative imaging in clinics, compact and economic integration rather than large and expensive equipment is required to coregister structural and functional imaging. However, current technologies, such as those integrating optical and gamma cameras or infrared and fluorescence imaging, involve certain drawbacks, including the radioactive biorisks of nuclear medicine indicators and the inconvenience of conducting measurements in dark environments. METHODS: To specifically and magnetically label liver tumors, an anti-alpha-fetoprotein (AFP) reagent was synthesized from biosafe iron oxide magnetic nanoparticles (MNPs) coated with anti-AFP antibody and solved in a phosphate buffered saline solution. In addition, a novel dual-imaging model system integrating an optical camera and magnetic scanning superconducting-quantum-interference device (SQUID) biosusceptometry (SSB) was proposed. The simultaneous coregistration of low-field magnetic images of MNP distributions and optical images of anatomical regions enabled the tumor distribution to be determined easily and in real time. To simulate targeted MNPs within animals, fewer reagents than the injected dose were contained in a microtube as a sample for the phantom test. The phantom test was conducted to examine the system characteristics and the analysis method of dual images. Furthermore, the animal tests were classified into two types, with liver tumors implanted either on the backs or livers of rats. The tumors on the backs were to visually confirm the imaging results of the phantom test, and the tumors on the livers were to simulate real cases in hepatocellular carcinoma people. RESULTS: A phantom test was conducted using the proposed analysis method; favorable contour agreement was shown between the MNP distribution in optical and magnetic images. Consequently, the positioning and discrimination of liver tumors implanted on the backs and livers of rats were verified by conducting in vivo and ex vivo tests. The results of tissue staining verified the feasibility of using this method to determine the distribution of liver tumors. CONCLUSION: The results of this study indicate the clinical potential of using anti-AFP-mediated MNPs and the dual-imaging model SSB for discriminating and locating tumors. |
format | Online Article Text |
id | pubmed-4329206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43292062015-02-16 Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles Chieh, Jen-Jie Huang, Kai-Wen Lee, Yi-Yan Wei, Wen-Chun J Nanobiotechnology Research BACKGROUND: For intraoperative imaging in operating theaters or preoperative imaging in clinics, compact and economic integration rather than large and expensive equipment is required to coregister structural and functional imaging. However, current technologies, such as those integrating optical and gamma cameras or infrared and fluorescence imaging, involve certain drawbacks, including the radioactive biorisks of nuclear medicine indicators and the inconvenience of conducting measurements in dark environments. METHODS: To specifically and magnetically label liver tumors, an anti-alpha-fetoprotein (AFP) reagent was synthesized from biosafe iron oxide magnetic nanoparticles (MNPs) coated with anti-AFP antibody and solved in a phosphate buffered saline solution. In addition, a novel dual-imaging model system integrating an optical camera and magnetic scanning superconducting-quantum-interference device (SQUID) biosusceptometry (SSB) was proposed. The simultaneous coregistration of low-field magnetic images of MNP distributions and optical images of anatomical regions enabled the tumor distribution to be determined easily and in real time. To simulate targeted MNPs within animals, fewer reagents than the injected dose were contained in a microtube as a sample for the phantom test. The phantom test was conducted to examine the system characteristics and the analysis method of dual images. Furthermore, the animal tests were classified into two types, with liver tumors implanted either on the backs or livers of rats. The tumors on the backs were to visually confirm the imaging results of the phantom test, and the tumors on the livers were to simulate real cases in hepatocellular carcinoma people. RESULTS: A phantom test was conducted using the proposed analysis method; favorable contour agreement was shown between the MNP distribution in optical and magnetic images. Consequently, the positioning and discrimination of liver tumors implanted on the backs and livers of rats were verified by conducting in vivo and ex vivo tests. The results of tissue staining verified the feasibility of using this method to determine the distribution of liver tumors. CONCLUSION: The results of this study indicate the clinical potential of using anti-AFP-mediated MNPs and the dual-imaging model SSB for discriminating and locating tumors. BioMed Central 2015-02-12 /pmc/articles/PMC4329206/ /pubmed/25889863 http://dx.doi.org/10.1186/s12951-015-0069-5 Text en © Chieh et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Chieh, Jen-Jie Huang, Kai-Wen Lee, Yi-Yan Wei, Wen-Chun Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title | Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title_full | Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title_fullStr | Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title_full_unstemmed | Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title_short | Dual-imaging model of SQUID biosusceptometry for locating tumors targeted using magnetic nanoparticles |
title_sort | dual-imaging model of squid biosusceptometry for locating tumors targeted using magnetic nanoparticles |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329206/ https://www.ncbi.nlm.nih.gov/pubmed/25889863 http://dx.doi.org/10.1186/s12951-015-0069-5 |
work_keys_str_mv | AT chiehjenjie dualimagingmodelofsquidbiosusceptometryforlocatingtumorstargetedusingmagneticnanoparticles AT huangkaiwen dualimagingmodelofsquidbiosusceptometryforlocatingtumorstargetedusingmagneticnanoparticles AT leeyiyan dualimagingmodelofsquidbiosusceptometryforlocatingtumorstargetedusingmagneticnanoparticles AT weiwenchun dualimagingmodelofsquidbiosusceptometryforlocatingtumorstargetedusingmagneticnanoparticles |