Cargando…

Genome-Wide Association Study of Metabolic Syndrome in Koreans

Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populat...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Seok Won, Chung, Myungguen, Park, Soo-Jung, Cho, Seong Beom, Hong, Kyung-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korea Genome Organization 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330253/
https://www.ncbi.nlm.nih.gov/pubmed/25705157
http://dx.doi.org/10.5808/GI.2014.12.4.187
_version_ 1782357559662870528
author Jeong, Seok Won
Chung, Myungguen
Park, Soo-Jung
Cho, Seong Beom
Hong, Kyung-Won
author_facet Jeong, Seok Won
Chung, Myungguen
Park, Soo-Jung
Cho, Seong Beom
Hong, Kyung-Won
author_sort Jeong, Seok Won
collection PubMed
description Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10(-8)), 8 SNPs with genome-wide suggestive p-values (5 × 10(-8) ≤ p < 1 × 10(-5)), and 2 SNPs of more functional variants with borderline p-values (5 × 10(-5) ≤ p < 1 × 10(-4)). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.
format Online
Article
Text
id pubmed-4330253
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Korea Genome Organization
record_format MEDLINE/PubMed
spelling pubmed-43302532015-02-22 Genome-Wide Association Study of Metabolic Syndrome in Koreans Jeong, Seok Won Chung, Myungguen Park, Soo-Jung Cho, Seong Beom Hong, Kyung-Won Genomics Inform Original Article Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10(-8)), 8 SNPs with genome-wide suggestive p-values (5 × 10(-8) ≤ p < 1 × 10(-5)), and 2 SNPs of more functional variants with borderline p-values (5 × 10(-5) ≤ p < 1 × 10(-4)). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. Korea Genome Organization 2014-12 2014-12-31 /pmc/articles/PMC4330253/ /pubmed/25705157 http://dx.doi.org/10.5808/GI.2014.12.4.187 Text en Copyright © 2014 by the Korea Genome Organization http://creativecommons.org/licenses/by-nc/3.0/ It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/).
spellingShingle Original Article
Jeong, Seok Won
Chung, Myungguen
Park, Soo-Jung
Cho, Seong Beom
Hong, Kyung-Won
Genome-Wide Association Study of Metabolic Syndrome in Koreans
title Genome-Wide Association Study of Metabolic Syndrome in Koreans
title_full Genome-Wide Association Study of Metabolic Syndrome in Koreans
title_fullStr Genome-Wide Association Study of Metabolic Syndrome in Koreans
title_full_unstemmed Genome-Wide Association Study of Metabolic Syndrome in Koreans
title_short Genome-Wide Association Study of Metabolic Syndrome in Koreans
title_sort genome-wide association study of metabolic syndrome in koreans
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330253/
https://www.ncbi.nlm.nih.gov/pubmed/25705157
http://dx.doi.org/10.5808/GI.2014.12.4.187
work_keys_str_mv AT jeongseokwon genomewideassociationstudyofmetabolicsyndromeinkoreans
AT chungmyungguen genomewideassociationstudyofmetabolicsyndromeinkoreans
AT parksoojung genomewideassociationstudyofmetabolicsyndromeinkoreans
AT choseongbeom genomewideassociationstudyofmetabolicsyndromeinkoreans
AT hongkyungwon genomewideassociationstudyofmetabolicsyndromeinkoreans