Cargando…
Genome-Wide Association Study of Metabolic Syndrome in Koreans
Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330253/ https://www.ncbi.nlm.nih.gov/pubmed/25705157 http://dx.doi.org/10.5808/GI.2014.12.4.187 |
_version_ | 1782357559662870528 |
---|---|
author | Jeong, Seok Won Chung, Myungguen Park, Soo-Jung Cho, Seong Beom Hong, Kyung-Won |
author_facet | Jeong, Seok Won Chung, Myungguen Park, Soo-Jung Cho, Seong Beom Hong, Kyung-Won |
author_sort | Jeong, Seok Won |
collection | PubMed |
description | Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10(-8)), 8 SNPs with genome-wide suggestive p-values (5 × 10(-8) ≤ p < 1 × 10(-5)), and 2 SNPs of more functional variants with borderline p-values (5 × 10(-5) ≤ p < 1 × 10(-4)). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. |
format | Online Article Text |
id | pubmed-4330253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Korea Genome Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-43302532015-02-22 Genome-Wide Association Study of Metabolic Syndrome in Koreans Jeong, Seok Won Chung, Myungguen Park, Soo-Jung Cho, Seong Beom Hong, Kyung-Won Genomics Inform Original Article Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10(-8)), 8 SNPs with genome-wide suggestive p-values (5 × 10(-8) ≤ p < 1 × 10(-5)), and 2 SNPs of more functional variants with borderline p-values (5 × 10(-5) ≤ p < 1 × 10(-4)). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. Korea Genome Organization 2014-12 2014-12-31 /pmc/articles/PMC4330253/ /pubmed/25705157 http://dx.doi.org/10.5808/GI.2014.12.4.187 Text en Copyright © 2014 by the Korea Genome Organization http://creativecommons.org/licenses/by-nc/3.0/ It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/). |
spellingShingle | Original Article Jeong, Seok Won Chung, Myungguen Park, Soo-Jung Cho, Seong Beom Hong, Kyung-Won Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title | Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title_full | Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title_fullStr | Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title_full_unstemmed | Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title_short | Genome-Wide Association Study of Metabolic Syndrome in Koreans |
title_sort | genome-wide association study of metabolic syndrome in koreans |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330253/ https://www.ncbi.nlm.nih.gov/pubmed/25705157 http://dx.doi.org/10.5808/GI.2014.12.4.187 |
work_keys_str_mv | AT jeongseokwon genomewideassociationstudyofmetabolicsyndromeinkoreans AT chungmyungguen genomewideassociationstudyofmetabolicsyndromeinkoreans AT parksoojung genomewideassociationstudyofmetabolicsyndromeinkoreans AT choseongbeom genomewideassociationstudyofmetabolicsyndromeinkoreans AT hongkyungwon genomewideassociationstudyofmetabolicsyndromeinkoreans |