Cargando…
Enhancer modeling uncovers transcriptional signatures of individual cardiac cell states in Drosophila
Here we used discriminative training methods to uncover the chromatin, transcription factor (TF) binding and sequence features of enhancers underlying gene expression in individual cardiac cells. We used machine learning with TF motifs and ChIP data for a core set of cardiogenic TFs and histone modi...
Autores principales: | Busser, Brian W., Haimovich, Julian, Huang, Di, Ovcharenko, Ivan, Michelson, Alan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330375/ https://www.ncbi.nlm.nih.gov/pubmed/25609699 http://dx.doi.org/10.1093/nar/gkv011 |
Ejemplares similares
-
Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification
por: Ahmad, Shaad M., et al.
Publicado: (2014) -
Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors
por: Zhu, Xianmin, et al.
Publicado: (2012) -
A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis
por: Busser, Brian W., et al.
Publicado: (2012) -
Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development
por: Kazemian, Majid, et al.
Publicado: (2013) -
OR35-03 Uncovering Causative Mutations in Polycystic Ovary Syndrome
por: Srivastava, Jaya, et al.
Publicado: (2023)