Cargando…
Domain organization within the nuclear export factor Mex67:Mtr2 generates an extended mRNA binding surface
The Mex67:Mtr2 complex is the principal yeast nuclear export factor for bulk mRNA and also contributes to ribosomal subunit export. Mex67 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA) that have been thought to be joined by flexible linkers like beads on a string, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330389/ https://www.ncbi.nlm.nih.gov/pubmed/25618852 http://dx.doi.org/10.1093/nar/gkv030 |
Sumario: | The Mex67:Mtr2 complex is the principal yeast nuclear export factor for bulk mRNA and also contributes to ribosomal subunit export. Mex67 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA) that have been thought to be joined by flexible linkers like beads on a string, with the RRM and LRR domains binding RNAs and the NTF2-like and UBA domains binding FG-nucleoporins to facilitate movement through nuclear pores. Here, we show that the NTF2-like domain from Saccharomyces cerevisiae Mex67:Mtr2 also contributes to RNA binding. Moreover, the 3.3 Å resolution crystal structure of the Mex67(ΔUBA):Mtr2 complex, supplemented with small angle X-ray scattering data, indicated that the LRR domain has a defined spatial relationship to the Mex67(NTF2L):Mtr2 region. Conversely, the RRM domain and especially the UBA domain are more mobile. The conformation assumed by the LRR and NTF2-like domains results in clusters of positively-charged residues on each becoming arranged to form a continuous interface for binding RNA on the opposite side of the complex to the region that interacts with FG-nucleoporins to facilitate passage through nuclear pores. |
---|