Cargando…
Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes
One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps) in driving attention selection...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330792/ https://www.ncbi.nlm.nih.gov/pubmed/25741266 http://dx.doi.org/10.3389/fnhum.2015.00060 |
Sumario: | One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps) in driving attention selection, hence increasing the probability for objects presented in complex and natural scenes to be successfully encoded into working memory (WM) and then correctly remembered. Here we asked whether the probability of retrieving high-saliency objects modulates the overall contents of WM, by decreasing the probability of retrieving other, lower-saliency objects. We presented pictures of natural scenes for 4 s. After a retention period of 8 s, we asked participants to verbally report as many objects/details as possible of the previous scenes. We then computed how many times the objects located at either the peak of maximal or minimal saliency in the scene (as indexed by a saliency-map; Itti et al., 1998) were recollected by participants. Results showed that maximal-saliency objects were recollected more often and earlier in the stream of successfully reported items than minimal-saliency objects. This indicates that bottom-up sensory salience increases the recollection probability and facilitates the access to memory representation at retrieval, respectively. Moreover, recollection of the maximal- (but not the minimal-) saliency objects predicted the overall amount of successfully recollected objects: The higher the probability of having successfully reported the most-salient object in the scene, the lower the amount of recollected objects. These findings highlight that bottom-up sensory saliency modulates the current contents of WM during recollection of objects from natural scenes, most likely by reducing available resources to encode and then retrieve other (lower saliency) objects. |
---|