Cargando…
The importance of mass spectrometric dereplication in fungal secondary metabolite analysis
Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids – which can all under...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330896/ https://www.ncbi.nlm.nih.gov/pubmed/25741325 http://dx.doi.org/10.3389/fmicb.2015.00071 |
_version_ | 1782357642452140032 |
---|---|
author | Nielsen, Kristian F. Larsen, Thomas O. |
author_facet | Nielsen, Kristian F. Larsen, Thomas O. |
author_sort | Nielsen, Kristian F. |
collection | PubMed |
description | Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids – which can all undergo extensive modifications by tailoring enzymes – thus potentially providing a large array of products from a single pathway. Elucidating the full chemical profile of a fungal species is a challenging exercise, even with elemental composition provided by high-resolution mass spectrometry (HRMS) used in combination with chemical databases (e.g., AntiBase) to dereplicate known compounds. This has led to a continuous effort to improve chromatographic separation in conjunction with improvement in HRMS detection. Major improvements have also occurred with 2D chromatography, ion-mobility, MS/MS and MS(3), stable isotope labeling feeding experiments, classic UV/Vis, and especially automated data-mining and metabolomics software approaches as the sheer amount of data generated is now the major challenge. This review will focus on the development and implementation of dereplication strategies and will highlight the importance of each stage of the process from sample preparation to chromatographic separation and finally toward both manual and more targeted methods for automated dereplication of fungal natural products using state-of-the art MS instrumentation. |
format | Online Article Text |
id | pubmed-4330896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-43308962015-03-04 The importance of mass spectrometric dereplication in fungal secondary metabolite analysis Nielsen, Kristian F. Larsen, Thomas O. Front Microbiol Microbiology Having entered the Genomic Era, it is now evident that the biosynthetic potential of filamentous fungi is much larger than was thought even a decade ago. Fungi harbor many cryptic gene clusters encoding for the biosynthesis of polyketides, non-ribosomal peptides, and terpenoids – which can all undergo extensive modifications by tailoring enzymes – thus potentially providing a large array of products from a single pathway. Elucidating the full chemical profile of a fungal species is a challenging exercise, even with elemental composition provided by high-resolution mass spectrometry (HRMS) used in combination with chemical databases (e.g., AntiBase) to dereplicate known compounds. This has led to a continuous effort to improve chromatographic separation in conjunction with improvement in HRMS detection. Major improvements have also occurred with 2D chromatography, ion-mobility, MS/MS and MS(3), stable isotope labeling feeding experiments, classic UV/Vis, and especially automated data-mining and metabolomics software approaches as the sheer amount of data generated is now the major challenge. This review will focus on the development and implementation of dereplication strategies and will highlight the importance of each stage of the process from sample preparation to chromatographic separation and finally toward both manual and more targeted methods for automated dereplication of fungal natural products using state-of-the art MS instrumentation. Frontiers Media S.A. 2015-02-17 /pmc/articles/PMC4330896/ /pubmed/25741325 http://dx.doi.org/10.3389/fmicb.2015.00071 Text en Copyright © 2015 Nielsen and Larsen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Nielsen, Kristian F. Larsen, Thomas O. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title | The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title_full | The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title_fullStr | The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title_full_unstemmed | The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title_short | The importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
title_sort | importance of mass spectrometric dereplication in fungal secondary metabolite analysis |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330896/ https://www.ncbi.nlm.nih.gov/pubmed/25741325 http://dx.doi.org/10.3389/fmicb.2015.00071 |
work_keys_str_mv | AT nielsenkristianf theimportanceofmassspectrometricdereplicationinfungalsecondarymetaboliteanalysis AT larsenthomaso theimportanceofmassspectrometricdereplicationinfungalsecondarymetaboliteanalysis AT nielsenkristianf importanceofmassspectrometricdereplicationinfungalsecondarymetaboliteanalysis AT larsenthomaso importanceofmassspectrometricdereplicationinfungalsecondarymetaboliteanalysis |