Cargando…

The Potential Role of Polymethyl Methacrylate as a New Packaging Material for the Implantable Medical Device in the Bladder

Polydimethylsiloxane (PDMS) is used in implantable medical devices; however, PDMS is not a completely biocompatible material for electronic medical devices in the bladder. To identify novel biocompatible materials for intravesical implanted medical devices, we evaluated the biocompatibility of polym...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Su Jin, Choi, Bumkyoo, Kim, Kang Sup, Bae, Woong Jin, Hong, Sung Hoo, Lee, Ji Youl, Hwang, Tae-Kon, Kim, Sae Woong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330953/
https://www.ncbi.nlm.nih.gov/pubmed/25705692
http://dx.doi.org/10.1155/2015/852456
Descripción
Sumario:Polydimethylsiloxane (PDMS) is used in implantable medical devices; however, PDMS is not a completely biocompatible material for electronic medical devices in the bladder. To identify novel biocompatible materials for intravesical implanted medical devices, we evaluated the biocompatibility of polymethyl methacrylate (PMMA) by analyzing changes in the levels of macrophages, macrophage migratory inhibitory factor (MIF), and inflammatory cytokines in the bladder. A ball-shaped metal coated with PMMA or PDMS was implanted into the bladders of rats, and after intravesical implantation, the inflammatory changes induced by the foreign body reaction were evaluated. In the early period after implantation, increased macrophage activity and MIF in the urothelium of the bladder were observed. However, significantly decreased macrophage activity and MIF in the bladder were observed after implantation with PMMA- or PDMS-coated metal in the later period. In addition, significantly decreased inflammatory cytokines such as IL-1β, IL-6, and TNF-α were observed with time. Based on these results, we suggest that MIF plays a role in the foreign body reaction and in the biocompatible packaging with PMMA for the implanted medical devices in the bladder.