Cargando…
Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption
Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330959/ https://www.ncbi.nlm.nih.gov/pubmed/25710027 http://dx.doi.org/10.1155/2015/806248 |
_version_ | 1782357657175195648 |
---|---|
author | Damms-Machado, Antje Mitra, Suparna Schollenberger, Asja E. Kramer, Klaus Michael Meile, Tobias Königsrainer, Alfred Huson, Daniel H. Bischoff, Stephan C. |
author_facet | Damms-Machado, Antje Mitra, Suparna Schollenberger, Asja E. Kramer, Klaus Michael Meile, Tobias Königsrainer, Alfred Huson, Daniel H. Bischoff, Stephan C. |
author_sort | Damms-Machado, Antje |
collection | PubMed |
description | Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss mechanisms with regard to gut microbial changes and energy harvest induced by LSG and a very low calorie diet in ten obese subjects (n = 5 per group) demonstrating identical weight loss during a follow-up period of six months. For gut microbiome analysis next generation sequencing was performed and faeces were analyzed for targeted metabolomics. The energy-reabsorbing potential of the gut microbiota decreased following LSG, indicated by the Bacteroidetes/Firmicutes ratio, but increased during diet. Changes in butyrate-producing bacterial species were responsible for the Firmicutes changes in both groups. No alteration of faecal butyrate was observed, but the microbial capacity for butyrate fermentation decreased following LSG and increased following dietetic intervention. LSG resulted in enhanced faecal excretion of nonesterified fatty acids and bile acids. LSG, but not dietetic restriction, improved the obesity-associated gut microbiota composition towards a lean microbiome phenotype. Moreover, LSG increased malabsorption due to loss in energy-rich faecal substrates and impairment of bile acid circulation. This trial is registered with ClinicalTrials.gov NCT01344525. |
format | Online Article Text |
id | pubmed-4330959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43309592015-02-23 Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption Damms-Machado, Antje Mitra, Suparna Schollenberger, Asja E. Kramer, Klaus Michael Meile, Tobias Königsrainer, Alfred Huson, Daniel H. Bischoff, Stephan C. Biomed Res Int Clinical Study Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss mechanisms with regard to gut microbial changes and energy harvest induced by LSG and a very low calorie diet in ten obese subjects (n = 5 per group) demonstrating identical weight loss during a follow-up period of six months. For gut microbiome analysis next generation sequencing was performed and faeces were analyzed for targeted metabolomics. The energy-reabsorbing potential of the gut microbiota decreased following LSG, indicated by the Bacteroidetes/Firmicutes ratio, but increased during diet. Changes in butyrate-producing bacterial species were responsible for the Firmicutes changes in both groups. No alteration of faecal butyrate was observed, but the microbial capacity for butyrate fermentation decreased following LSG and increased following dietetic intervention. LSG resulted in enhanced faecal excretion of nonesterified fatty acids and bile acids. LSG, but not dietetic restriction, improved the obesity-associated gut microbiota composition towards a lean microbiome phenotype. Moreover, LSG increased malabsorption due to loss in energy-rich faecal substrates and impairment of bile acid circulation. This trial is registered with ClinicalTrials.gov NCT01344525. Hindawi Publishing Corporation 2015 2015-02-01 /pmc/articles/PMC4330959/ /pubmed/25710027 http://dx.doi.org/10.1155/2015/806248 Text en Copyright © 2015 Antje Damms-Machado et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Study Damms-Machado, Antje Mitra, Suparna Schollenberger, Asja E. Kramer, Klaus Michael Meile, Tobias Königsrainer, Alfred Huson, Daniel H. Bischoff, Stephan C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title | Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title_full | Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title_fullStr | Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title_full_unstemmed | Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title_short | Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption |
title_sort | effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption |
topic | Clinical Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330959/ https://www.ncbi.nlm.nih.gov/pubmed/25710027 http://dx.doi.org/10.1155/2015/806248 |
work_keys_str_mv | AT dammsmachadoantje effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT mitrasuparna effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT schollenbergerasjae effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT kramerklausmichael effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT meiletobias effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT konigsraineralfred effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT husondanielh effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption AT bischoffstephanc effectsofsurgicalanddietaryweightlosstherapyforobesityongutmicrobiotacompositionandnutrientabsorption |