Cargando…

In Vitro Inhibitory and Cytotoxic Activity of MFM 501, a Novel Codonopsinine Derivative, against Methicillin-Resistant Staphylococcus aureus Clinical Isolates

28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity w...

Descripción completa

Detalles Bibliográficos
Autores principales: Johari, Saiful Azmi, Mohtar, Mastura, Syed Mohammad, Sharifah Aminah, Sahdan, Rohana, Shaameri, Zurina, Hamzah, Ahmad Sazali, Mohammat, Mohd Fazli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331153/
https://www.ncbi.nlm.nih.gov/pubmed/25710030
http://dx.doi.org/10.1155/2015/823829
Descripción
Sumario:28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC(50) values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.