Cargando…

Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise

Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker’s noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be...

Descripción completa

Detalles Bibliográficos
Autores principales: RIMELL, Andrew N., MANSFIELD, Neil J., PADDAN, Gurmail S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Occupational Safety and Health, Japan 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331191/
https://www.ncbi.nlm.nih.gov/pubmed/25224333
http://dx.doi.org/10.2486/indhealth.2013-0003
Descripción
Sumario:Many workers are exposed to noise in their industrial environment. Excessive noise exposure can cause health problems and therefore it is important that the worker’s noise exposure is assessed. This may require measurement by an equipment manufacturer or the employer. Human exposure to noise may be measured using microphones; however, weighting filters are required to correlate the physical noise sound pressure level measurements to the human’s response to an auditory stimulus. IEC 61672-1 and ANSI S1.43 describe suitable weighting filters, but do not explain how to implement them for digitally recorded sound pressure level data. By using the bilinear transform, it is possible to transform the analogue equations given in the standards into digital filters. This paper describes the implementation of the weighting filters as digital IIR (Infinite Impulse Response) filters and provides all the necessary formulae to directly calculate the filter coefficients for any sampling frequency. Thus, the filters in the standards can be implemented in any numerical processing software (such as a spreadsheet or programming language running on a PC, mobile device or embedded system).