Cargando…

High-throughput sequencing of nematode communities from total soil DNA extractions

BACKGROUND: Nematodes are extremely diverse and numbers of species are predicted to be more than a million. Studies on nematode diversity are difficult and laborious using classical methods and therefore high-throughput sequencing is an attractive alternative. Primers that have been used in previous...

Descripción completa

Detalles Bibliográficos
Autores principales: Sapkota, Rumakanta, Nicolaisen, Mogens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331302/
https://www.ncbi.nlm.nih.gov/pubmed/25880249
http://dx.doi.org/10.1186/s12898-014-0034-4
Descripción
Sumario:BACKGROUND: Nematodes are extremely diverse and numbers of species are predicted to be more than a million. Studies on nematode diversity are difficult and laborious using classical methods and therefore high-throughput sequencing is an attractive alternative. Primers that have been used in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. RESULTS: In this study an amplification strategy which selectively amplifies a fragment of the SSU from nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. CONCLUSIONS: Our amplification and sequencing strategy for assessing nematode diversity was able to collect a broad diversity without prior nematode enrichment and thus the method will be highly valuable in ecological studies of nematodes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12898-014-0034-4) contains supplementary material, which is available to authorized users.