Cargando…
Benford’s Law: Textbook Exercises and Multiple-Choice Testbanks
Benford’s Law describes the finding that the distribution of leading (or leftmost) digits of innumerable datasets follows a well-defined logarithmic trend, rather than an intuitive uniformity. In practice this means that the most common leading digit is 1, with an expected frequency of 30.1%, and th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331362/ https://www.ncbi.nlm.nih.gov/pubmed/25689468 http://dx.doi.org/10.1371/journal.pone.0117972 |
Sumario: | Benford’s Law describes the finding that the distribution of leading (or leftmost) digits of innumerable datasets follows a well-defined logarithmic trend, rather than an intuitive uniformity. In practice this means that the most common leading digit is 1, with an expected frequency of 30.1%, and the least common is 9, with an expected frequency of 4.6%. Currently, the most common application of Benford’s Law is in detecting number invention and tampering such as found in accounting-, tax-, and voter-fraud. We demonstrate that answers to end-of-chapter exercises in physics and chemistry textbooks conform to Benford’s Law. Subsequently, we investigate whether this fact can be used to gain advantage over random guessing in multiple-choice tests, and find that while testbank answers in introductory physics closely conform to Benford’s Law, the testbank is nonetheless secure against such a Benford’s attack for banal reasons. |
---|