Cargando…
Training Spiking Neural Models Using Artificial Bee Colony
Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these m...
Autores principales: | Vazquez, Roberto A., Garro, Beatriz A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331474/ https://www.ncbi.nlm.nih.gov/pubmed/25709644 http://dx.doi.org/10.1155/2015/947098 |
Ejemplares similares
-
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015) -
On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model
por: Paiva, Juliana Pereira Lisboa Mohallem, et al.
Publicado: (2016) -
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
por: Chen, Wei
Publicado: (2014) -
Reinforcement learning for solution updating in Artificial Bee Colony
por: Fairee, Suthida, et al.
Publicado: (2018) -
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
por: Abdulameer, Mohammed Hasan, et al.
Publicado: (2014)