Cargando…
Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus
Extrastriate cortical areas are frequently composed of subpopulations of neurons encoding specific features or stimuli, such as color, disparity, or faces, and patches of neurons encoding similar stimulus properties are typically embedded in interconnected networks, such as the attention or face-pro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331519/ https://www.ncbi.nlm.nih.gov/pubmed/25689048 http://dx.doi.org/10.1371/journal.pbio.1002072 |
_version_ | 1782357732079173632 |
---|---|
author | Premereur, Elsie Van Dromme, Ilse C. Romero, Maria C. Vanduffel, Wim Janssen, Peter |
author_facet | Premereur, Elsie Van Dromme, Ilse C. Romero, Maria C. Vanduffel, Wim Janssen, Peter |
author_sort | Premereur, Elsie |
collection | PubMed |
description | Extrastriate cortical areas are frequently composed of subpopulations of neurons encoding specific features or stimuli, such as color, disparity, or faces, and patches of neurons encoding similar stimulus properties are typically embedded in interconnected networks, such as the attention or face-processing network. The goal of the current study was to examine the effective connectivity of subsectors of neurons in the same cortical area with highly similar neuronal response properties. We first recorded single- and multi-unit activity to identify two neuronal patches in the anterior part of the macaque intraparietal sulcus (IPS) showing the same depth structure selectivity and then employed electrical microstimulation during functional magnetic resonance imaging in these patches to determine the effective connectivity of these patches. The two IPS subsectors we identified—with the same neuronal response properties and in some cases separated by only 3 mm—were effectively connected to remarkably distinct cortical networks in both dorsal and ventral stream in three macaques. Conversely, the differences in effective connectivity could account for the known visual-to-motor gradient within the anterior IPS. These results clarify the role of the anterior IPS as a pivotal brain region where dorsal and ventral visual stream interact during object analysis. Thus, in addition to the anatomical connectivity of cortical areas and the properties of individual neurons in these areas, the effective connectivity provides novel key insights into the widespread functional networks that support behavior. |
format | Online Article Text |
id | pubmed-4331519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43315192015-02-24 Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus Premereur, Elsie Van Dromme, Ilse C. Romero, Maria C. Vanduffel, Wim Janssen, Peter PLoS Biol Research Article Extrastriate cortical areas are frequently composed of subpopulations of neurons encoding specific features or stimuli, such as color, disparity, or faces, and patches of neurons encoding similar stimulus properties are typically embedded in interconnected networks, such as the attention or face-processing network. The goal of the current study was to examine the effective connectivity of subsectors of neurons in the same cortical area with highly similar neuronal response properties. We first recorded single- and multi-unit activity to identify two neuronal patches in the anterior part of the macaque intraparietal sulcus (IPS) showing the same depth structure selectivity and then employed electrical microstimulation during functional magnetic resonance imaging in these patches to determine the effective connectivity of these patches. The two IPS subsectors we identified—with the same neuronal response properties and in some cases separated by only 3 mm—were effectively connected to remarkably distinct cortical networks in both dorsal and ventral stream in three macaques. Conversely, the differences in effective connectivity could account for the known visual-to-motor gradient within the anterior IPS. These results clarify the role of the anterior IPS as a pivotal brain region where dorsal and ventral visual stream interact during object analysis. Thus, in addition to the anatomical connectivity of cortical areas and the properties of individual neurons in these areas, the effective connectivity provides novel key insights into the widespread functional networks that support behavior. Public Library of Science 2015-02-17 /pmc/articles/PMC4331519/ /pubmed/25689048 http://dx.doi.org/10.1371/journal.pbio.1002072 Text en © 2015 Premereur et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Premereur, Elsie Van Dromme, Ilse C. Romero, Maria C. Vanduffel, Wim Janssen, Peter Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title | Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title_full | Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title_fullStr | Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title_full_unstemmed | Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title_short | Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus |
title_sort | effective connectivity of depth-structure–selective patches in the lateral bank of the macaque intraparietal sulcus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331519/ https://www.ncbi.nlm.nih.gov/pubmed/25689048 http://dx.doi.org/10.1371/journal.pbio.1002072 |
work_keys_str_mv | AT premereurelsie effectiveconnectivityofdepthstructureselectivepatchesinthelateralbankofthemacaqueintraparietalsulcus AT vandrommeilsec effectiveconnectivityofdepthstructureselectivepatchesinthelateralbankofthemacaqueintraparietalsulcus AT romeromariac effectiveconnectivityofdepthstructureselectivepatchesinthelateralbankofthemacaqueintraparietalsulcus AT vanduffelwim effectiveconnectivityofdepthstructureselectivepatchesinthelateralbankofthemacaqueintraparietalsulcus AT janssenpeter effectiveconnectivityofdepthstructureselectivepatchesinthelateralbankofthemacaqueintraparietalsulcus |