Cargando…

Interpreting lemma and palea homologies: a point of view from rice floral mutants

In contrast to eudicot flowers which typically exhibit sepals and petals at their periphery, the flowers of grasses are distinguished by the presence of characteristic outer organs. In place of sepals, grasses have evolved the lemma and the palea, two bract-like structures that partially or fully en...

Descripción completa

Detalles Bibliográficos
Autores principales: Lombardo, Fabien, Yoshida, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331672/
https://www.ncbi.nlm.nih.gov/pubmed/25741351
http://dx.doi.org/10.3389/fpls.2015.00061
Descripción
Sumario:In contrast to eudicot flowers which typically exhibit sepals and petals at their periphery, the flowers of grasses are distinguished by the presence of characteristic outer organs. In place of sepals, grasses have evolved the lemma and the palea, two bract-like structures that partially or fully enclose the inner reproductive organs. With little morphological similarities to sepals, whether the lemma and palea are part of the perianth or non-floral organs has been a longstanding debate. In recent years, comparative studies of floral mutants as well as the availability of whole genome sequences in many plant species have provided strong arguments in favor of the hypothesis of lemma and palea being modified sepals. In rice, a feature of the palea is the bending of its lateral region into a hook-shaped marginal structure. This allows the palea to lock into the facing lemma region, forming a close-fitting lemma–palea enclosure. In this article, we focus on the rice lemma and palea and review some of the key transcription factors involved in their development and functional specialization. Alternative interpretations of these organs are also addressed.