Cargando…
Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization
BACKGROUND: Predicting functional properties of proteins in protein-protein interaction (PPI) networks presents a challenging problem and has important implication in computational biology. Collective classification (CC) that utilizes both attribute features and relational information to jointly cla...
Autores principales: | Wu, Qingyao, Wang, Zhenyu, Li, Chunshan, Ye, Yunming, Li, Yueping, Sun, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331684/ https://www.ncbi.nlm.nih.gov/pubmed/25708164 http://dx.doi.org/10.1186/1752-0509-9-S1-S9 |
Ejemplares similares
-
Collective prediction of protein functions from protein-protein interaction networks
por: Wu, Qingyao, et al.
Publicado: (2014) -
Decomposing PPI networks for complex discovery
por: Liu, Guimei, et al.
Publicado: (2011) -
Identifying essential proteins from active PPI networks constructed with dynamic gene expression
por: Xiao, Qianghua, et al.
Publicado: (2015) -
A methodology for detecting the orthology signal in a PPI network at a functional complex level
por: Jancura, Pavol, et al.
Publicado: (2012) -
Clustering PPI data by combining FA and SHC method
por: Lei, Xiujuan, et al.
Publicado: (2015)